scispace - formally typeset

Journal ArticleDOI

Erratum to: Dynamic life cycle assessment: framework and application to an institutional building

23 Jan 2013-International Journal of Life Cycle Assessment (Springer-Verlag)-Vol. 18, Iss: 3, pp 745-746

TL;DR: Comparison of results from static and DLCA models, using the TRACI method, shows that DLCA results are classified into four categories: original construction materials; prerenovation operations; renovation and addition materials; and post-renovation operation 2009 through end of lifetime.

AbstractFig. 3 Comparison of results from static and DLCA models, using the TRACI method. Results are normalized to the total static LCA results for each category. Static LCA results were calculated as the total of the initial construction and projection of the initial year’s operating energy consumption for the 75-year life of the building. DLCA results are classified into four categories: original construction materials; prerenovation operations (operating energy consumption through 2008); renovation and addition materials; and post-renovation operations (operating energy consumption 2009 through end of lifetime). GW global warming potential, AC acidification potential, CA human health cancer effects, NC human health noncancer effects, RE human health respiratory effects, EU eutrophication, OD ozone depletion potential, ET ecotoxicity, PO photochemical smog, NREU nonrenewable energy use The online version of the original article can be found at http://dx.doi.org/ 10.1007/s11367-012-0528-2.

...read more

Content maybe subject to copyright    Report

Citations
More filters

Journal ArticleDOI
Abstract: Since the Global Warming Potential (GWP) was first presented in the Intergovernmental Panel on Climate Change (IPCC) First Assessment Report, the metric has been scrutinized and alternative metrics have been suggested. The IPCC Fifth Assessment Report gives a scientific assessment of the main recent findings from climate metrics research and provides the most up-to-date values for a subset of metrics and time horizons. The objectives of this paper are to perform a systematic review of available midpoint metrics (i.e. using an indicator situated in the middle of the cause-effect chain from emissions to climate change) for well-mixed greenhouse gases and near-term climate forcers based on the current literature, to provide recommendations for the development and use of characterization factors for climate change in life cycle assessment (LCA), and to identify research needs. This work is part of the ‘Global Guidance on Environmental Life Cycle Impact Assessment’ project held by the UNEP/SETAC Life Cycle Initiative and is intended to support a consensus finding workshop. In an LCA context, it can make sense to use several complementary metrics that serve different purposes, and from there get an understanding about the robustness of the LCA study to different perspectives and metrics. We propose a step-by-step approach to test the sensitivity of LCA results to different modelling choices and provide recommendations for specific issues such as the consideration of climate-carbon feedbacks and the inclusion of pollutants with cooling effects (negative metric values).

87 citations


Journal ArticleDOI
Abstract: Traditionally, building rating systems focused on, among others, energy used during operational stage. Recently, there is a strong push by these rating systems to include the life cycle energy use of buildings, particularly using Life Cycle Assessment (LCA), by offering credits that can be used to achieve higher certification levels. As LCA-based tools are evolving to meet this growing demand, it is important to include methods that also quantify the impact of energy being used by ecosystems that indirectly contribute to building life cycle energy use. Using a case-study building, this paper provides an up-to-date comparison of energy-based indicators in tools for building assessment, including those that report both conventional life cycle energy and those that also include a wider systems boundary that captures energy use even further upstream. This paper applies two existing LCA tools, namely, an economic input–output based model, Economic Input–Output LCA, and a process-based model, ATHENA® Impact Estimator, to estimate life cycle energy use in an example building. In order to extend the assessment to address energy use further upstream, this paper also tests the Ecologically based LCA tool and an application of the emergy methodology. All of these tools are applied to the full service life of the building, i.e., all stages, namely, raw material formation, product, construction, use, and end-of-life; and their results are compared. Besides contrasting the use of energy-based indicators in building life cycle tools, this paper uncovered major challenges that confront stakeholders in evaluating the built environments using LCA and similar approaches.

59 citations


Journal ArticleDOI
TL;DR: A case study was performed on a TES of sawn timber production encompassing wood growth in an intensively managed forest ecosystem and further industrial processing and results show that the managed forest accounted for almost all resource usage and biodiversity loss through land occupation but also for a remediating effect on human health, mostly via capture of airborne fine particles.
Abstract: Life Cycle Assessment (LCA) is a tool to assess the environmental sustainability of a product; it quantifies the environmental impact of a product's life cycle. In conventional LCAs, the boundaries of a product's life cycle are limited to the human/industrial system, the technosphere. Ecosystems, which provide resources to and take up emissions from the technosphere, are not included in those boundaries. However, similar to the technosphere, ecosystems also have an impact on their (surrounding) environment through their resource usage (e.g., nutrients) and emissions (e.g., CH4). We therefore propose a LCA framework to assess the impact of integrated Techno-Ecological Systems (TES), comprising relevant ecosystems and the technosphere. In our framework, ecosystems are accounted for in the same manner as technosphere compartments. Also, the remediating effect of uptake of pollutants, an ecosystem service, is considered. A case study was performed on a TES of sawn timber production encompassing wood growth in an intensively managed forest ecosystem and further industrial processing. Results show that the managed forest accounted for almost all resource usage and biodiversity loss through land occupation but also for a remediating effect on human health, mostly via capture of airborne fine particles. These findings illustrate the potential relevance of including ecosystems in the product's life cycle of a LCA, though further research is needed to better quantify the environmental impact of TES.

27 citations


Journal ArticleDOI
TL;DR: The feasibility of dynamic LCA, including full temporalization of background system, was demonstrated through the development of a web-based tool and temporal database and it was showed that considering temporal differentiation across the complete life cycle, especially in the Background LCI system, can significantly change the LCA results.
Abstract: The objective is to demonstrate an operational tool for dynamic LCA, based on the model by Tiruta-Barna et al. (J Clean Prod 116:198-206, Tiruta-Barna et al. 2016). The main innovation lies in the combination of full temporalization of the background inventory and a graph search algorithm leading to full dynamic LCI, further coupled to dynamic LCIA. The following objectives were addressed: (1) development of a database with temporal parameters for all processes of ecoinvent 3.2, (2) implementation of the model and the database in integrated software, and (3) demonstration on a case study comparing a conventional internal combustion engine car to an electric one. Calculation of dynamic LCA (including temporalization of background and foreground system) implies (i) a dynamic LCI model, (ii) a temporal database including temporal characterization of ecoinvent 3.2, (iii) a graph search algorithm, and (iv) dynamic LCIA models, in this specific case for climate change. The dynamic LCI model relies on a supply chain modeling perspective, instead of an accounting one. Unit processes are operations showing a specific functioning over time. Mass and energy exchanges depend on specific supply models. Production and supply are described by temporal parameters and functions. The graph search algorithm implements the dynamic LCI model, using the temporal database, to derive the life cycle environmental interventions scaled to the functional unit and distributed over time. The interventions are further combined with the dynamic LCIA models to obtain the temporally differentiated LCA results. A web-based tool for dynamic LCA calculations (DyPLCA) implementing the dynamic LCI model and temporal database was developed. The tool is operational and available for testing (http://dyplca.univ-lehavre.fr/). The case study showed that temporal characterization of background LCI can change significantly the LCA results. It is fair to say that temporally differentiated LCI in the background offers little interest for activities with high downstream emissions. It can provide insightful results when applied to life cycle systems where significant environmental interventions occur upstream. Those systems concern, for example, renewable electricity generation, for which most emissions are embodied in an infrastructure upstream. It is also observed that a higher degree of infrastructure contribution leads to higher spreading of impacts over time. Finally, a potential impact of the time window choice and discounting was observed in the case study, for comparison and decision-making. Time differentiation as a whole may thus influence the conclusions of a study. The feasibility of dynamic LCA, including full temporalization of background system, was demonstrated through the development of a web-based tool and temporal database. It was showed that considering temporal differentiation across the complete life cycle, especially in the background system, can significantly change the LCA results. This is particularly relevant for product systems showing significant environmental interventions and material exchanges over long time periods upstream to the functional unit. A number of inherent limitations were discussed and shall be considered as opportunities for further research. This requires a collegial effort, involving industrial experts from different sectors.

14 citations