scispace - formally typeset
Open AccessJournal ArticleDOI

Escaping free-energy minima

Alessandro Laio, +1 more
- 01 Oct 2002 - 
- Vol. 99, Iss: 20, pp 12562-12566
Reads0
Chats0
TLDR
A powerful method for exploring the properties of the multidimensional free energy surfaces of complex many-body systems by means of coarse-grained non-Markovian dynamics in the space defined by a few collective coordinates is introduced.
Abstract
We introduce a powerful method for exploring the properties of the multidimensional free energy surfaces (FESs) of complex many-body systems by means of coarse-grained non-Markovian dynamics in the space defined by a few collective coordinates. A characteristic feature of these dynamics is the presence of a history-dependent potential term that, in time, fills the minima in the FES, allowing the efficient exploration and accurate determination of the FES as a function of the collective coordinates. We demonstrate the usefulness of this approach in the case of the dissociation of a NaCl molecule in water and in the study of the conformational changes of a dialanine in solution.

read more

Citations
More filters
Journal ArticleDOI

Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning

TL;DR: Boltzmann generators are trained on the energy function of a many-body system and learn to provide unbiased, one-shot samples from its equilibrium state and can be trained to directly generate independent samples of low-energy structures of condensed-matter systems and protein molecules.
Journal ArticleDOI

Software update: The ORCA program system—Version 5.0

TL;DR: The article describes the most salient features of the ORCA quantum chemistry program suite, which features a highly improved performance, increased numerical robustness, a host of new functionality, and greatly improved user friendliness.
Journal ArticleDOI

RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview.

TL;DR: An in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods are covered.
Journal ArticleDOI

Advances in theory and their application within the field of zeolite chemistry.

TL;DR: In this review most of the currently available modeling tools are introduced and illustrated on the most challenging problems in zeolite science and Directions for future model developments will be given.
Journal ArticleDOI

Exploring Multidimensional Free Energy Landscapes Using Time-Dependent Biases on Collective Variables

TL;DR: Numerical tests are carried out on processes including conformational changes in model peptides and translocation of a halide ion across a lipid membrane through a peptide nanotube, and similarities and differences between the ABF and metadynamics schemes are discussed.
References
More filters
Journal ArticleDOI

Optimization by Simulated Annealing

TL;DR: There is a deep and useful connection between statistical mechanics and multivariate or combinatorial optimization (finding the minimum of a given function depending on many parameters), and a detailed analogy with annealing in solids provides a framework for optimization of very large and complex systems.
Journal ArticleDOI

Efficient, multiple-range random walk algorithm to calculate the density of states.

TL;DR: A new Monte Carlo algorithm is presented that permits us to directly access the free energy and entropy, is independent of temperature, and is efficient for the study of both 1st order and 2nd order phase transitions.
Journal ArticleDOI

Hyperdynamics: Accelerated Molecular Dynamics of Infrequent Events

TL;DR: In this article, a general method for accelerating the molecular-dynamics (MD) simulation of infrequent events in solids is derived, and the diffusion mechanism of a 10-atom Ag cluster on the Ag(111) surface using a $220\ensuremath{\mu}\mathrm{s}$ hyper-MD simulation.
Journal ArticleDOI

Constrained reaction coordinate dynamics for the simulation of rare events

TL;DR: In this article, a computationally efficient molecular dynamics method for estimating the rates of rare events that occur by activated processes is described, where the system is constrained at bottleneck regions on a general many-body reaction coordinate in order to generate a biased configurational distribution.
Journal ArticleDOI

Free energy from constrained molecular dynamics

TL;DR: In this article, the blue-moon ensemble method was used to compute the potential of mean force and transmission coefficient of a given reaction coordinate in the case of an arbitrary reaction coordinate.
Related Papers (5)