scispace - formally typeset
Journal ArticleDOI

Extended Absorption Window and Improved Stability of Cesium-Based Triple-Cation Perovskite Solar Cells Passivated with Perfluorinated Organics

Reads0
Chats0
TLDR
In this article, the perovskite surface was passivated with a hydrophobic fluorinated organic salt, namely, pentafluoropropylamonium iodide (PFPAI), which not only narrowed the band gap but also contributed toward the modulation of surface and electronic properties of the resulting film.
Abstract
Despite the high-quality films achieved with triple-cation perovskites, the deviation from an optimized band gap by virtue of Shockley–Queisser estimation signifies consequential light absorption losses in this system. Herein, it is shown that, by passivating the perovskite surface with a hydrophobic fluorinated organic salt, namely, pentafluoropropylamonium iodide (PFPAI), not only is the band gap narrowed but the process also contributes toward the modulation of surface and electronic properties of the resulting film. The cumulative effect of these factors promotes the enhancement in the power conversion efficiency (PCE) and moisture stability of the perovskite solar cells (PSCs) fabricated with the PFPAI-passivated films. Suppression of surface defects and mitigation of interfacial charge recombination in the treated film are in good agreement with the longer photoluminescence (PL) decay lifetime observed. The PFPAI-passivated PSC afforded a PCE of 16.6% with good ambient stability, evidenced by minima...

read more

Citations
More filters
Journal ArticleDOI

Molecularly imprinted ultrasensitive cholesterol photoelectrochemical sensor based on perfluorinated organics functionalization and hollow carbon spheres anchored organic-inorganic perovskite.

TL;DR: Wang et al. as mentioned in this paper introduced hollow carbon spheres (HCSs) and 2-(perfluorohexyl) ethyl methacrylate (PFEM) based molecularly imprinted polymers (MIPs) to dual-functionalize CH3NH3PbI3.
Journal ArticleDOI

Various Approaches to Synthesize Water-Stable Halide PeNCs

TL;DR: The perovskite fever is on-going in material-based research due to its extraordinary properties like high absorption coefficient, tunable band gap (throughout the visible range), near-unity emission quantum yield, large...
References
More filters
Journal ArticleDOI

Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells

TL;DR: Two organolead halide perovskite nanocrystals were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells, which exhibit strong band-gap absorptions as semiconductors.
Journal ArticleDOI

Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.

TL;DR: In this article, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Journal ArticleDOI

Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3

TL;DR: Two studies show, using a variety of time-resolved absorption and emission spectroscopic techniques, that perovskite materials manifest relatively long diffusion paths for charge carriers energized by light absorption, highlighting effective carrier diffusion as a fruitful parameter for further optimization.
Journal ArticleDOI

Interface engineering of highly efficient perovskite solar cells

TL;DR: Perovskite films received a boost in photovoltaic efficiency through controlled formation of charge-generating films and improved current transfer to the electrodes and low-temperature processing steps allowed the use of materials that draw current out of the perovskites layer more efficiently.
Journal ArticleDOI

High-performance photovoltaic perovskite layers fabricated through intramolecular exchange

TL;DR: An approach for depositing high-quality FAPbI3 films, involving FAP bI3 crystallization by the direct intramolecular exchange of dimethylsulfoxide (DMSO) molecules intercalated in PbI2 with formamidinium iodide is reported.
Related Papers (5)