scispace - formally typeset
Open AccessJournal ArticleDOI

f(T) teleparallel gravity and cosmology

Reads0
Chats0
TLDR
In this paper, the role of torsion in gravity has been extensively investigated along the main direction of bringing gravity closer to its gauge formulation and incorporating spin in a geometric description.
Abstract
Over recent decades, the role of torsion in gravity has been extensively investigated along the main direction of bringing gravity closer to its gauge formulation and incorporating spin in a geometric description. Here we review various torsional constructions, from teleparallel, to Einstein-Cartan, and metric-affine gauge theories, resulting in extending torsional gravity in the paradigm of f (T) gravity, where f (T) is an arbitrary function of the torsion scalar. Based on this theory, we further review the corresponding cosmological and astrophysical applications. In particular, we study cosmological solutions arising from f (T) gravity, both at the background and perturbation levels, in different eras along the cosmic expansion. The f (T) gravity construction can provide a theoretical interpretation of the late-time universe acceleration, alternative to a cosmological constant, and it can easily accommodate with the regular thermal expanding history including the radiation and cold dark matter dominated phases. Furthermore, if one traces back to very early times, for a certain class of f (T) models, a sufficiently long period of inflation can be achieved and hence can be investigated by cosmic microwave background observations-or, alternatively, the Big Bang singularity can be avoided at even earlier moments due to the appearance of non-singular bounces. Various observational constraints, especially the bounds coming from the large-scale structure data in the case of f (T) cosmology, as well as the behavior of gravitational waves, are described in detail. Moreover, the spherically symmetric and black hole solutions of the theory are reviewed. Additionally, we discuss various extensions of the f (T) paradigm. Finally, we consider the relation with other modified gravitational theories, such as those based on curvature, like f (R) gravity, trying to illuminate the subject of which formulation, or combination of formulations, might be more suitable for quantization ventures and cosmological applications.

read more

Citations
More filters
Journal ArticleDOI

Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution

TL;DR: In this paper, the authors systematically review some standard issues and also the latest developments of modified gravity in cosmology, emphasizing on inflation, bouncing cosmology and late-time acceleration era.
Book ChapterDOI

Particle Creation by Black Holes

TL;DR: In this paper, it is shown that quantum mechanical effects cause black holes to create and emit particles as if they were hot bodies with temperature, which leads to a slow decrease in the mass of the black hole and to its eventual disappearance.
Journal ArticleDOI

In the realm of the Hubble tension - a review of solutions

TL;DR: In this paper, the authors present a thorough review of recent Hubble constant estimates and a summary of the proposed theoretical solutions, including early or dynamical dark energy, neutrino interactions, interacting cosmologies, primordial magnetic fields, and modified gravity.
References
More filters
Journal ArticleDOI

Inference from Iterative Simulation Using Multiple Sequences

TL;DR: The focus is on applied inference for Bayesian posterior distributions in real problems, which often tend toward normal- ity after transformations and marginalization, and the results are derived as normal-theory approximations to exact Bayesian inference, conditional on the observed simulations.
Related Papers (5)