scispace - formally typeset
Journal ArticleDOI

Femtosecond Optical Breakdown in Dielectrics

TLDR
In this article, the optical breakdown threshold and ablation depth in dielectrics with different band gaps for laser pulse durations ranging from 5 ps to 5 fs at a carrier wavelength of 780 nm.
Abstract
We report measurements of the optical breakdown threshold and ablation depth in dielectrics with different band gaps for laser pulse durations ranging from 5 ps to 5 fs at a carrier wavelength of 780 nm. For t, 100 fs, the dominant channel for free electron generation is found to be either impact or multiphoton ionization (MPI) depending on the size of the band gap. The observed MPI rates are substantially lower than those predicted by the Keldysh theory. We demonstrate that sub-10-fs laser pulses open up the way to reversible nonperturbative nonlinear optics (at intensities greater than 10 14 Wycm 2 slightly below damage threshold) and to nanometer-precision laser ablation (slightly above threshold) in dielectric materials. [S0031-9007(98)05969-9]

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Intense few-cycle laser fields: Frontiers of nonlinear optics

TL;DR: In this article, the authors present the landmarks of the 30-odd-year evolution of ultrashort-pulse laser physics and technology culminating in the generation of intense few-cycle light pulses and discuss the impact of these pulses on high-field physics.
Journal ArticleDOI

Femtosecond filamentation in transparent media

TL;DR: In this paper, the main aspects of ultrashort laser pulse filamentation in various transparent media such as air (gases), transparent solids and liquids are introduced and discussed.
Journal ArticleDOI

Mechanisms of pulsed laser ablation of biological tissues.

TL;DR: It was found that the structure and morphology also affect the energy transport among tissue constituents and therefore the ablation efficiency of biological tissues is increased.
Journal ArticleDOI

Mechanisms of femtosecond laser nanosurgery of cells and tissues

TL;DR: In this article, the working mechanisms of femtosecond laser nanoprocessing in biomaterials with oscillator pulses of 80-MHz repetition rate and with amplified pulses of 1-kHz repetition rate were investigated.
Journal ArticleDOI

Ultrashort filaments of light in weakly ionized, optically transparent media

TL;DR: In this article, the authors present the landmarks of the 10-odd-year progress in this field, focusing on the theoretical modeling of the propagation equations, whose physical ingredients are discussed from numerical simulations.
References
More filters
Book

Laser damage in optical materials

Roger M. Wood
TL;DR: In this article, a pictorial record of many of the different phenomena observed, as well as a discussion of scaling laws, cumulative damage and measurement techniques is presented, along with typical damage thresholds for numerous optical materials over a wide range of wavelengths.
Related Papers (5)