scispace - formally typeset
Search or ask a question

Showing papers in "Chemical Reviews in 2003"


Journal ArticleDOI
TL;DR: This chapter discusses the development of DFT as a tool for Calculating Atomic andMolecular Properties and its applications, as well as some of the fundamental and Computational aspects.
Abstract: I. Introduction: Conceptual vs Fundamental andComputational Aspects of DFT1793II. Fundamental and Computational Aspects of DFT 1795A. The Basics of DFT: The Hohenberg−KohnTheorems1795B. DFT as a Tool for Calculating Atomic andMolecular Properties: The Kohn−ShamEquations1796C. Electronic Chemical Potential andElectronegativity: Bridging Computational andConceptual DFT1797III. DFT-Based Concepts and Principles 1798A. General Scheme: Nalewajski’s ChargeSensitivity Analysis1798B. Concepts and Their Calculation 18001. Electronegativity and the ElectronicChemical Potential18002. Global Hardness and Softness 18023. The Electronic Fukui Function, LocalSoftness, and Softness Kernel18074. Local Hardness and Hardness Kernel 18135. The Molecular Shape FunctionsSimilarity 18146. The Nuclear Fukui Function and ItsDerivatives18167. Spin-Polarized Generalizations 18198. Solvent Effects 18209. Time Evolution of Reactivity Indices 1821C. Principles 18221. Sanderson’s Electronegativity EqualizationPrinciple18222. Pearson’s Hard and Soft Acids andBases Principle18253. The Maximum Hardness Principle 1829IV. Applications 1833A. Atoms and Functional Groups 1833B. Molecular Properties 18381. Dipole Moment, Hardness, Softness, andRelated Properties18382. Conformation 18403. Aromaticity 1840C. Reactivity 18421. Introduction 18422. Comparison of Intramolecular ReactivitySequences18443. Comparison of Intermolecular ReactivitySequences18494. Excited States 1857D. Clusters and Catalysis 1858V. Conclusions 1860VI. Glossary of Most Important Symbols andAcronyms1860VII. Acknowledgments 1861VIII. Note Added in Proof 1862IX. References 1865

3,890 citations


Journal ArticleDOI
TL;DR: The Rehybridization of the Acceptor (RICT) and Planarization ofThe Molecule (PICT) III is presented, with a comparison of the effects on yield and radiationless deactivation processes.
Abstract: 6. Rehybridization of the Acceptor (RICT) 3908 7. Planarization of the Molecule (PICT) 3909 III. Fluorescence Spectroscopy 3909 A. Solvent Effects and the Model Compounds 3909 1. Solvent Effects on the Spectra 3909 2. Steric Effects and Model Compounds 3911 3. Bandwidths 3913 4. Isoemissive Points 3914 B. Dipole Moments 3915 C. Radiative Rates and Transition Moments 3916 1. Quantum Yields and Radiationless Deactivation Processes 3916

2,924 citations



Journal ArticleDOI
TL;DR: Privileged substructures are believed to achieve this through the mimicry of common protein surface elements that are responsible for binding, such as β- and gamma;-turns.
Abstract: Privileged substructures are of potentially great importance in medicinal chemistry. These scaffolds are characterized by their ability to promiscuously bind to a multitude of receptors through a variety of favorable characteristics. This may include presentation of their substituents in a spatially defined manner and perhaps also the ability to directly bind to the receptor itself, as well as exhibiting promising characteristics to aid bioavailability of the overall molecule. It is believed that some privileged substructures achieve this through the mimicry of common protein surface elements that are responsible for binding, such as β- and gamma;-turns. As a result, these structures represent a promising means by which new lead compounds may be identified.

2,620 citations


Journal ArticleDOI
TL;DR: The graph below shows the progression of monoanionic and non-monoanionic ligands through the history of synthesis, as well as some of the properties that have been identified since the discovery of R-Diimine.
Abstract: B. Anionic Ligands 302 IX. Group 9 Catalysts 302 X. Group 10 Catalysts 303 A. Neutral Ligands 303 1. R-Diimine and Related Ligands 303 2. Other Neutral Nitrogen-Based Ligands 304 3. Chelating Phosphorus-Based Ligands 304 B. Monoanionic Ligands 305 1. [PO] Chelates 305 2. [NO] Chelates 306 3. Other Monoanionic Ligands 306 4. Carbon-Based Ligands 306 XI. Group 11 Catalysts 307 XII. Group 12 Catalysts 307 XIII. Group 13 Catalysts 307 XIV. Summary and Outlook 308 XV. Glossary 308 XVI. References 308

2,369 citations



Journal ArticleDOI
TL;DR: Alkylations with Phenols, Nitrogen Nucleophiles in AAA Total Synthesis, and Considerations for Enantioselective Allylic Alkylation are presented.
Abstract: A. Primary Alcohols as Nucleophiles 2931 B. Carboxylates as Nucleophiles 2931 C. Alkylations with Phenols 2932 IV. Nitrogen Nucleophiles in AAA Total Synthesis 2935 A. Alkylamines as Nucleophiles 2935 B. Azides as a Nucleophile 2936 C. Sulfonamide Nucleophiles 2937 D. Imide Nucleophiles 2938 E. Heterocyclic Amine Nucleophiles 2940 V. Sulfur Nucleophiles 2941 VI. Summary and Conclusions 2941 VII. Acknowledgment 2941 VIII. References 2942 I. Considerations for Enantioselective Allylic Alkylation

2,230 citations


Journal ArticleDOI
TL;DR: The increasing demand to produce enantiomerically pure pharmaceuticals, agrochemicals, flavors, and other fine chemicals has advanced the field of asymmetric catalytic technologies, and asymmetric hydrogenation utilizing molecular hydrogen to reduce prochiral olefins, ketones, and imines has become one of the most efficient methods for constructing chiral compounds.
Abstract: The increasing demand to produce enantiomerically pure pharmaceuticals, agrochemicals, flavors, and other fine chemicals has advanced the field of asymmetric catalytic technologies.1,2 Among all asymmetric catalytic methods, asymmetric hydrogenation utilizing molecular hydrogen to reduce prochiral olefins, ketones, and imines, have become one of the most efficient methods for constructing chiral compounds.3 The development of homogeneous asymmetric hydrogenation was initiated by Knowles4a and Horner4b in the late 1960s, after the discovery of Wilkinson’s homogeneous hydrogenation catalyst [RhCl(PPh3)3]. By replacing triphenylphosphine of the Wilkinson’s catalystwithresolvedchiralmonophosphines,6Knowles and Horner reported the earliest examples of enantioselective hydrogenation, albeit with poor enantioselectivity. Further exploration by Knowles with an improved monophosphine CAMP provided 88% ee in hydrogenation of dehydroamino acids.7 Later, two breakthroughs were made in asymmetric hydrogenation by Kagan and Knowles, respectively. Kagan reported the first bisphosphine ligand, DIOP, for Rhcatalyzed asymmetric hydrogenation.8 The successful application of DIOP resulted in several significant directions for ligand design in asymmetric hydrogenation. Chelating bisphosphorus ligands could lead to superior enantioselectivity compared to monodentate phosphines. Additionally, P-chiral phosphorus ligands were not necessary for achieving high enantioselectivity, and ligands with backbone chirality could also provide excellent ee’s in asymmetric hydrogenation. Furthermore, C2 symmetry was an important structural feature for developing new efficient chiral ligands. Kagan’s seminal work immediately led to the rapid development of chiral bisphosphorus ligands. Knowles made his significant discovery of a C2-symmetric chelating bisphosphine ligand, DIPAMP.9 Due to its high catalytic efficiency in Rh-catalyzed asymmetric hydrogenation of dehydroamino acids, DIPAMP was quickly employed in the industrial production of L-DOPA.10 The success of practical synthesis of L-DOPA via asymmetric hydrogenation constituted a milestone work and for this work Knowles was awarded the Nobel Prize in 2001.3k This work has enlightened chemists to realize * Corresponding author. 3029 Chem. Rev. 2003, 103, 3029−3069

1,995 citations


Journal ArticleDOI
TL;DR: It was found that the structure and morphology also affect the energy transport among tissue constituents and therefore the ablation efficiency of biological tissues is increased.
Abstract: Author(s): Vogel, Alfred; Venugopalan, Vasan | Abstract: The mechanisms of pulsed laser ablation of biological tissues were studied. The transiently empty space created between the fiber tip and the tissue surface improved the optical transmission to the target and thus increased the ablation efficiency. It was found that the structure and morphology also affect the energy transport among tissue constituents.

1,861 citations



Journal ArticleDOI
TL;DR: Reactions of O2(∆g) are associated with significant applications in several fields, including organic synthesis, bleaching processes, and, most importantly, the photodynamic therapy of cancer, which has now obtained regulatory approval in most countries for the treatment of several types of tumors.
Abstract: For more than 70 years, researchers in several areas of science have been intrigued by the physical and chemical properties of the lowest excited states of molecular oxygen. With two singlet states lying close above its triplet ground state, the O2 molecule possesses a very unique configuration, which gives rise to a very rich and easily accessible chemistry, and also to a number of important photophysical interactions. In particular, photosensitized reactions of the first excited state, O2(∆g), play a key role in many natural photochemical and photobiological processes, such as photodegradation and aging processes including even photocarcinogenesis. Reactions of O2(∆g) are associated with significant applications in several fields, including organic synthesis, bleaching processes, and, most importantly, the photodynamic therapy of cancer, which has now obtained regulatory approval in most countries for the treatment of several types of tumors. The development of both applications and novel observation techniques has strongly accelerated during the past few years. Significant recent advances include, for example, the development of novel luminescent singlet oxygen probes,1-4 the time-resolved detection of O2(∆g) in a transmission microscope,5 the first time-resolved measurements of singlet oxygen luminescence in vivo,6 and the observation of oxygen quenching of triplet-excited single molecules.7 Experimental and theoretical studies on the mechanisms of photosensitized formation of excited O2 states and of their deactivation have been performed for almost 40 years. While most early liquid-phase studies were exclusively concerned with O2(∆g), recent technological advances also made possible time-resolved investigations of the second excited state, O2(Σg), which can be formed in competition with O2(∆g) in many cases. A significant number of * Corresponding author. Tel.: ++49 69 79829448. Fax: ++49 69 79829445. E-mail: R.Schmidt@chemie.uni-frankfurt.de. 1685 Chem. Rev. 2003, 103, 1685−1757


Journal ArticleDOI
TL;DR: This review will focus mainly on the new methods that have appeared in the literature since 1989 for stereoselective cyclopropanation reactions from olefins: the halomethylmetal-mediated cycloalkane reactions, the transition metal-catalyzed decomposition of diazo compounds, and the nucleophilic addition-ring closure sequence.
Abstract: Organic chemists have always been fascinated by the cyclopropane subunit.1 The smallest cycloalkane is found as a basic structural element in a wide range of naturally occurring compounds.2 Moreover, many cyclopropane-containing unnatural products have been prepared to test the bonding features of this class of highly strained cycloalkanes3 and to study enzyme mechanism or inhibition.4 Cyclopropanes have also been used as versatile synthetic intermediates in the synthesis of more functionalized cycloalkanes5,6 and acyclic compounds.7 In recent years, most of the synthetic efforts have focused on the enantioselective synthesis of cyclopropanes.8 This has remained a challenge ever since it was found that the members of the pyrethroid class of compounds were effective insecticides.9 New and more efficient methods for the preparation of these entities in enantiomerically pure form are still evolving, and this review will focus mainly on the new methods that have appeared in the literature since 1989. It will elaborate on only three types of stereoselective cyclopropanation reactions from olefins: the halomethylmetal-mediated cyclopropanation reactions (eq 1), the transition metal-catalyzed decomposition of diazo compounds (eq 2), and the nucleophilic addition-ring closure sequence (eqs 3 and 4). These three processes will be examined in the context of diastereoand enantiocontrol. In the last section of the review, other methods commonly used to make chiral, nonracemic cyclopropanes will be briefly outlined.






Journal ArticleDOI
TL;DR: This work has shown that the structure and function of the Cryptochromes and the Circadian Clock, as well as their role in the regulation of Photolyase, are fundamentally different than that of the EMTs used in previous studies.
Abstract: 1. Electron Donor 2223 2. Electron Transfer Path 2225 3. Electron Transfer Mechanism 2226 4. Physiological Relevance 2226 D. Radical Reactions in Photolyase 2226 E. “Dark Function” of Photolyase 2227 F. Regulation of Photolyase 2227 III. (6−4) Photolyase 2228 IV. Cryptochromes 2230 A. Structure 2231 B. Function 2231 1. Circadian Rythm 2231 2. Mammalian Circadian System 2231 3. Cryptochromes and the Circadian Clock 2232 V. Perspectives 2234 VI. Acknowledgment 2235 VII. References 2235




Journal ArticleDOI
TL;DR: Metal Oxides Generated in Situ 2461 4.1.
Abstract: 3. Soluble Metal Oxides 2459 3.1. Polyoxometalates 2459 3.2. Peroxotungstates 2459 3.3. Peroxomolybdates 2460 3.4. Methyltrioxorhenium 2461 3.5. Other Metal Oxides 2461 4. Metal Oxides Generated in Situ 2461 4.1. Selenium and Arsenic Compounds 2461 4.2. Simple Metal Salts 2462 5. Coordination Complexes 2463 5.1. Manganese Porphyrins 2463 5.2. Iron Porphyrins 2464 5.3. Manganese Salen Complexes 2466 5.4. 1,4,7-Triazacyclononane (TACN) Complexes 2466 5.5. Iron and Manganese Pyridyl-Amine Complexes 2468




Journal ArticleDOI
TL;DR: This review focuses on the part of the molecule containing two atoms attached together by a double bond with substituents W-Z which may be found as two isomeric molecules.
Abstract: Organic molecules as well as metal complexes may exist as several geometric isomers1 which display distinct physical properties and chemical reactivities. A molecule containing two atoms (in general, two carbons) attached together by a double bond with substituents W-Z may be found as two isomeric † C.D. dedicates this review to Professor Andrée Marquet as a mark of his admiration and gratitude. * To whom correspondence should be addressed: Tel: (33) 169 08 52 25. Fax: (33) 169 08 90 71. E-mail: christophe.dugave@cea.fr. ‡ Present address: Département de Chimie, Institut de Pharmacologie, Université de Sherbrooke, 3001, 12e Avenue nord, Sherbrooke, Québec, J1H 5N4 Canada. 2475 Chem. Rev. 2003, 103, 2475−2532