scispace - formally typeset
Open AccessProceedings ArticleDOI

Fully convolutional networks for semantic segmentation

TLDR
The key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning.
Abstract
Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, exceed the state-of-the-art in semantic segmentation. Our key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning. We define and detail the space of fully convolutional networks, explain their application to spatially dense prediction tasks, and draw connections to prior models. We adapt contemporary classification networks (AlexNet [20], the VGG net [31], and GoogLeNet [32]) into fully convolutional networks and transfer their learned representations by fine-tuning [3] to the segmentation task. We then define a skip architecture that combines semantic information from a deep, coarse layer with appearance information from a shallow, fine layer to produce accurate and detailed segmentations. Our fully convolutional network achieves state-of-the-art segmentation of PASCAL VOC (20% relative improvement to 62.2% mean IU on 2012), NYUDv2, and SIFT Flow, while inference takes less than one fifth of a second for a typical image.

read more

Content maybe subject to copyright    Report

Citations
More filters
Book ChapterDOI

Deep Virtual Stereo Odometry: Leveraging Deep Depth Prediction for Monocular Direct Sparse Odometry

TL;DR: The Deep Virtual Stereo Odometry incorporates deep depth predictions into Direct Sparse Odometry (DSO) as direct virtual stereo measurements and designs a novel deep network that refines predicted depth from a single image in a two-stage process.
Journal ArticleDOI

DeepCrack: A deep hierarchical feature learning architecture for crack segmentation

TL;DR: A deep hierarchical convolutional neural network (CNN) is proposed, called as DeepCrack, to predict pixel-wise crack segmentation in an end-to-end method using both guided filtering and Conditional Random Fields methods to refine the final prediction results.
Journal ArticleDOI

Deep learning for image-based cancer detection and diagnosis − A survey

TL;DR: The survey provides an overview on deep learning and the popular architectures used for cancer detection and diagnosis and presents four popular deep learning architectures, including convolutional neural networks, fully Convolutional networks, auto-encoders, and deep belief networks in the survey.
Proceedings ArticleDOI

From Motion Blur to Motion Flow: A Deep Learning Solution for Removing Heterogeneous Motion Blur

TL;DR: This work directly estimates the motion flow from the blurred image through a fully-convolutional deep neural network (FCN) and recovers the unblurred image from the estimated motion flow and is the first universal end-to-end mapping from the blur image to the dense motion flow.
Proceedings ArticleDOI

DeepEdge: A multi-scale bifurcated deep network for top-down contour detection

TL;DR: This work claims that recognizing objects and predicting contours are two mutually related tasks, and shows that it can invert the commonly established pipeline: instead of detecting contours with low-level cues for a higher-level recognition task, it exploits object-related features as high- level cues for contour detection.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Book

Pattern Recognition and Machine Learning

TL;DR: Probability Distributions, linear models for Regression, Linear Models for Classification, Neural Networks, Graphical Models, Mixture Models and EM, Sampling Methods, Continuous Latent Variables, Sequential Data are studied.
Proceedings ArticleDOI

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation

TL;DR: RCNN as discussed by the authors combines CNNs with bottom-up region proposals to localize and segment objects, and when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost.
Book

A wavelet tour of signal processing

TL;DR: An introduction to a Transient World and an Approximation Tour of Wavelet Packet and Local Cosine Bases.
Related Papers (5)