scispace - formally typeset
Open AccessProceedings ArticleDOI

Fully convolutional networks for semantic segmentation

TLDR
The key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning.
Abstract
Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, exceed the state-of-the-art in semantic segmentation. Our key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning. We define and detail the space of fully convolutional networks, explain their application to spatially dense prediction tasks, and draw connections to prior models. We adapt contemporary classification networks (AlexNet [20], the VGG net [31], and GoogLeNet [32]) into fully convolutional networks and transfer their learned representations by fine-tuning [3] to the segmentation task. We then define a skip architecture that combines semantic information from a deep, coarse layer with appearance information from a shallow, fine layer to produce accurate and detailed segmentations. Our fully convolutional network achieves state-of-the-art segmentation of PASCAL VOC (20% relative improvement to 62.2% mean IU on 2012), NYUDv2, and SIFT Flow, while inference takes less than one fifth of a second for a typical image.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

iPrivacy: Image Privacy Protection by Identifying Sensitive Objects via Deep Multi-Task Learning

TL;DR: This paper consists of the following contributions: massive social images and their privacy settings are leveraged to learn the object-privacy relatedness effectively and identify a set of privacy-sensitive object classes automatically and a deep multi-task learning algorithm is developed.
Book ChapterDOI

Fighting Fake News: Image Splice Detection via Learned Self-Consistency

TL;DR: A learning algorithm for detecting visual image manipulations that is trained only using a large dataset of real photographs to determine whether an image is self-consistent — that is, whether its content could have been produced by a single imaging pipeline.
Journal ArticleDOI

Deep-learning inversion: A next-generation seismic velocity model building method

TL;DR: A novel method based on the supervised deep fully convolutional neural network (FCN) for velocity-model building (VMB) directly from raw seismograms is investigated, showing promising performances in comparison with conventional FWI even when the input data are in more realistic scenarios.
Posted Content

Fully Convolutional Networks for Dense Semantic Labelling of High-Resolution Aerial Imagery

TL;DR: To make better use of image features, a pre-trained CNN is fine-tuned on remote sensing data in a hybrid network context, resulting in superior results compared to a network trained from scratch.
Proceedings Article

Unsupervised Deep Learning for Optical Flow Estimation

TL;DR: This work devise a simple yet effective unsupervised method for learning optical flow, by directly minimizing photometric consistency by using image warping by the estimated flow.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Book

Pattern Recognition and Machine Learning

TL;DR: Probability Distributions, linear models for Regression, Linear Models for Classification, Neural Networks, Graphical Models, Mixture Models and EM, Sampling Methods, Continuous Latent Variables, Sequential Data are studied.
Proceedings ArticleDOI

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation

TL;DR: RCNN as discussed by the authors combines CNNs with bottom-up region proposals to localize and segment objects, and when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost.
Book

A wavelet tour of signal processing

TL;DR: An introduction to a Transient World and an Approximation Tour of Wavelet Packet and Local Cosine Bases.
Related Papers (5)