scispace - formally typeset
Open AccessProceedings ArticleDOI

Fully convolutional networks for semantic segmentation

TLDR
The key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning.
Abstract
Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, exceed the state-of-the-art in semantic segmentation. Our key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning. We define and detail the space of fully convolutional networks, explain their application to spatially dense prediction tasks, and draw connections to prior models. We adapt contemporary classification networks (AlexNet [20], the VGG net [31], and GoogLeNet [32]) into fully convolutional networks and transfer their learned representations by fine-tuning [3] to the segmentation task. We then define a skip architecture that combines semantic information from a deep, coarse layer with appearance information from a shallow, fine layer to produce accurate and detailed segmentations. Our fully convolutional network achieves state-of-the-art segmentation of PASCAL VOC (20% relative improvement to 62.2% mean IU on 2012), NYUDv2, and SIFT Flow, while inference takes less than one fifth of a second for a typical image.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Deep Learning Automates the Quantitative Analysis of Individual Cells in Live-Cell Imaging Experiments.

TL;DR: Deep convolutional neural networks are an accurate method that require less curation time, are generalizable to a multiplicity of cell types, from bacteria to mammalian cells, and expand live-cell imaging capabilities to include multi-cell type systems.
Proceedings ArticleDOI

Learning Synergies Between Pushing and Grasping with Self-Supervised Deep Reinforcement Learning

TL;DR: This work demonstrates that it is possible to discover and learn complex synergies between non-prehensile and prehensile actions from scratch through model-free deep reinforcement learning, and achieves better grasping success rates and picking efficiencies than baseline alternatives after a few hours of training.
Journal ArticleDOI

Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community

TL;DR: In this article, the authors provide a comprehensive survey of state-of-the-art remote sensing deep learning research for remote sensing applications, focusing on theories, tools, and challenges for the remote sensing community.
Journal ArticleDOI

T-CNN: Tubelets With Convolutional Neural Networks for Object Detection From Videos

TL;DR: A deep learning framework that incorporates temporal and contextual information from tubelets obtained in videos, which dramatically improves the baseline performance of existing still-image detection frameworks when they are applied to videos is proposed, called T-CNN.
Book ChapterDOI

Human Pose Estimation via Convolutional Part Heatmap Regression

TL;DR: In this article, a CNN cascaded architecture was proposed for learning part relationships and spatial context, and robustly inferring pose even for the case of severe part occlusions. But the performance of the proposed architecture is limited.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Book

Pattern Recognition and Machine Learning

TL;DR: Probability Distributions, linear models for Regression, Linear Models for Classification, Neural Networks, Graphical Models, Mixture Models and EM, Sampling Methods, Continuous Latent Variables, Sequential Data are studied.
Proceedings ArticleDOI

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation

TL;DR: RCNN as discussed by the authors combines CNNs with bottom-up region proposals to localize and segment objects, and when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost.
Book

A wavelet tour of signal processing

TL;DR: An introduction to a Transient World and an Approximation Tour of Wavelet Packet and Local Cosine Bases.
Related Papers (5)