scispace - formally typeset
Open AccessProceedings ArticleDOI

Fully convolutional networks for semantic segmentation

TLDR
The key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning.
Abstract
Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, exceed the state-of-the-art in semantic segmentation. Our key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning. We define and detail the space of fully convolutional networks, explain their application to spatially dense prediction tasks, and draw connections to prior models. We adapt contemporary classification networks (AlexNet [20], the VGG net [31], and GoogLeNet [32]) into fully convolutional networks and transfer their learned representations by fine-tuning [3] to the segmentation task. We then define a skip architecture that combines semantic information from a deep, coarse layer with appearance information from a shallow, fine layer to produce accurate and detailed segmentations. Our fully convolutional network achieves state-of-the-art segmentation of PASCAL VOC (20% relative improvement to 62.2% mean IU on 2012), NYUDv2, and SIFT Flow, while inference takes less than one fifth of a second for a typical image.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Deep MRI brain extraction: A 3D convolutional neural network for skull stripping

TL;DR: A 3D convolutional deep learning architecture to address shortcomings of existing methods, not limited to non-enhanced T1w images, and may prove useful for large-scale studies and clinical trials.
Proceedings ArticleDOI

Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes

TL;DR: In this paper, a curriculum-style learning approach is proposed to minimize the domain gap in semantic segmentation by solving easy tasks first in order to infer some necessary properties about the target domain; in particular, the first task is to learn global label distributions over images and local distributions over superpixels.
Proceedings ArticleDOI

Deep Feature Flow for Video Recognition

TL;DR: Deep Feature Flow as mentioned in this paper runs the expensive convolutional sub-network only on sparse key frames and propagates their deep feature maps to other frames via a flow field, which achieves significant speedup as flow computation is relatively fast.
Journal ArticleDOI

Classification With an Edge: Improving Semantic Image Segmentation with Boundary Detection

TL;DR: This work constructs a comparatively simple, memory-efficient model by adding boundary detection to the Segnet encoder-decoder architecture, and includes boundary detection in FCN-type models and sets up a high-end classifier ensemble, showing that boundary detection significantly improves semantic segmentation with CNNs.
Posted Content

Adversarial Examples: Attacks and Defenses for Deep Learning

TL;DR: In this paper, the authors present a taxonomy of methods for generating adversarial examples for deep neural networks and further elaborate on countermeasures for adversarial example and explore the challenges and the potential solutions.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Book

Pattern Recognition and Machine Learning

TL;DR: Probability Distributions, linear models for Regression, Linear Models for Classification, Neural Networks, Graphical Models, Mixture Models and EM, Sampling Methods, Continuous Latent Variables, Sequential Data are studied.
Proceedings ArticleDOI

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation

TL;DR: RCNN as discussed by the authors combines CNNs with bottom-up region proposals to localize and segment objects, and when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost.
Book

A wavelet tour of signal processing

TL;DR: An introduction to a Transient World and an Approximation Tour of Wavelet Packet and Local Cosine Bases.
Related Papers (5)