scispace - formally typeset
Open AccessProceedings ArticleDOI

Fully convolutional networks for semantic segmentation

TLDR
The key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning.
Abstract
Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, exceed the state-of-the-art in semantic segmentation. Our key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning. We define and detail the space of fully convolutional networks, explain their application to spatially dense prediction tasks, and draw connections to prior models. We adapt contemporary classification networks (AlexNet [20], the VGG net [31], and GoogLeNet [32]) into fully convolutional networks and transfer their learned representations by fine-tuning [3] to the segmentation task. We then define a skip architecture that combines semantic information from a deep, coarse layer with appearance information from a shallow, fine layer to produce accurate and detailed segmentations. Our fully convolutional network achieves state-of-the-art segmentation of PASCAL VOC (20% relative improvement to 62.2% mean IU on 2012), NYUDv2, and SIFT Flow, while inference takes less than one fifth of a second for a typical image.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Inf-Net: Automatic COVID-19 Lung Infection Segmentation From CT Images

TL;DR: Li et al. as discussed by the authors proposed a COVID-19 Lung Infection Segmentation Deep Network ( Inf-Net) to automatically identify infected regions from chest CT slices, where a parallel partial decoder is used to aggregate the high-level features and generate a global map.
Proceedings ArticleDOI

Deep Pyramidal Residual Networks

TL;DR: This research gradually increases the feature map dimension at all units to involve as many locations as possible in the network architecture and proposes a novel residual unit capable of further improving the classification accuracy with the new network architecture.
Proceedings ArticleDOI

MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving

TL;DR: This paper presents an approach to joint classification, detection and semantic segmentation using a unified architecture where the encoder is shared amongst the three tasks, and performs extremely well in the challenging KITTI dataset.
Proceedings ArticleDOI

Simple Does It: Weakly Supervised Instance and Semantic Segmentation

TL;DR: The authors proposed a weak supervision approach that does not require modification of the segmentation training procedure, and showed that when carefully designing the input labels from given bounding boxes, even a single round of training is enough to improve over previously reported weakly supervised results.
Proceedings ArticleDOI

Hide-and-Seek: Forcing a Network to be Meticulous for Weakly-Supervised Object and Action Localization

TL;DR: The key idea is to hide patches in a training image randomly, forcing the network to seek other relevant parts when the most discriminative part is hidden, which obtains superior performance compared to previous methods for weakly-supervised object localization on the ILSVRC dataset.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Book

Pattern Recognition and Machine Learning

TL;DR: Probability Distributions, linear models for Regression, Linear Models for Classification, Neural Networks, Graphical Models, Mixture Models and EM, Sampling Methods, Continuous Latent Variables, Sequential Data are studied.
Proceedings ArticleDOI

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation

TL;DR: RCNN as discussed by the authors combines CNNs with bottom-up region proposals to localize and segment objects, and when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost.
Book

A wavelet tour of signal processing

TL;DR: An introduction to a Transient World and an Approximation Tour of Wavelet Packet and Local Cosine Bases.
Related Papers (5)