scispace - formally typeset
Open AccessProceedings ArticleDOI

Fully convolutional networks for semantic segmentation

TLDR
The key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning.
Abstract
Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, exceed the state-of-the-art in semantic segmentation. Our key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning. We define and detail the space of fully convolutional networks, explain their application to spatially dense prediction tasks, and draw connections to prior models. We adapt contemporary classification networks (AlexNet [20], the VGG net [31], and GoogLeNet [32]) into fully convolutional networks and transfer their learned representations by fine-tuning [3] to the segmentation task. We then define a skip architecture that combines semantic information from a deep, coarse layer with appearance information from a shallow, fine layer to produce accurate and detailed segmentations. Our fully convolutional network achieves state-of-the-art segmentation of PASCAL VOC (20% relative improvement to 62.2% mean IU on 2012), NYUDv2, and SIFT Flow, while inference takes less than one fifth of a second for a typical image.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers

TL;DR: In this paper, two new strategies to detect objects accurately and efficiently using deep convolutional neural network are investigated: scale-dependent pooling and layerwise cascaded rejection classifiers.
Proceedings ArticleDOI

Character Region Awareness for Text Detection

TL;DR: Zhang et al. as mentioned in this paper proposed a new scene text detection method to effectively detect text area by exploring each character and affinity between characters, which significantly outperforms the state-of-the-art detectors.
Proceedings ArticleDOI

BB8: A Scalable, Accurate, Robust to Partial Occlusion Method for Predicting the 3D Poses of Challenging Objects without Using Depth

Mahdi Rad, +1 more
TL;DR: A novel method for 3D object detection and pose estimation from color images only that uses segmentation to detect the objects of interest in 2D even in presence of partial occlusions and cluttered background and is the first to report results on the Occlusion dataset using color imagesonly.
Proceedings ArticleDOI

Efficient Piecewise Training of Deep Structured Models for Semantic Segmentation

TL;DR: Zhang et al. as discussed by the authors proposed a patch-patch context between image regions and patch-background context, and formulated conditional random fields (CRFs) with CNN-based pairwise potential functions to capture semantic correlations between neighboring patches.
Journal ArticleDOI

VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images

TL;DR: An auto‐context version of the VoxResNet is proposed by combining the low‐level image appearance features, implicit shape information, and high‐level context together for further improving the segmentation performance, and achieved the best performance in the 2013 MICCAI MRBrainS challenge.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Book

Pattern Recognition and Machine Learning

TL;DR: Probability Distributions, linear models for Regression, Linear Models for Classification, Neural Networks, Graphical Models, Mixture Models and EM, Sampling Methods, Continuous Latent Variables, Sequential Data are studied.
Proceedings ArticleDOI

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation

TL;DR: RCNN as discussed by the authors combines CNNs with bottom-up region proposals to localize and segment objects, and when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost.
Book

A wavelet tour of signal processing

TL;DR: An introduction to a Transient World and an Approximation Tour of Wavelet Packet and Local Cosine Bases.
Related Papers (5)