scispace - formally typeset
Open AccessProceedings ArticleDOI

Fully convolutional networks for semantic segmentation

TLDR
The key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning.
Abstract
Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, exceed the state-of-the-art in semantic segmentation. Our key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning. We define and detail the space of fully convolutional networks, explain their application to spatially dense prediction tasks, and draw connections to prior models. We adapt contemporary classification networks (AlexNet [20], the VGG net [31], and GoogLeNet [32]) into fully convolutional networks and transfer their learned representations by fine-tuning [3] to the segmentation task. We then define a skip architecture that combines semantic information from a deep, coarse layer with appearance information from a shallow, fine layer to produce accurate and detailed segmentations. Our fully convolutional network achieves state-of-the-art segmentation of PASCAL VOC (20% relative improvement to 62.2% mean IU on 2012), NYUDv2, and SIFT Flow, while inference takes less than one fifth of a second for a typical image.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Deep Cocktail Network: Multi-source Unsupervised Domain Adaptation with Category Shift

TL;DR: This paper proposes a deep cocktail network (DCTN) to battle the domain and category shifts among multiple sources and evaluates DCTN in three domain adaptation benchmarks, which clearly demonstrate the superiority of the framework.
Journal ArticleDOI

Constrained-CNN losses for weakly supervised segmentation.

TL;DR: A differentiable penalty is proposed, which enforces inequality constraints directly in the loss function, avoiding expensive Lagrangian dual iterates and proposal generation and has the potential to close the gap between weakly and fully supervised learning in semantic medical image segmentation.
Proceedings ArticleDOI

Learning Selective Self-Mutual Attention for RGB-D Saliency Detection

TL;DR: This paper proposes to fuse attention learned in both modalities, Inspired by the Non-local model, to integrate the self-attention and each other's attention to propagate long-range contextual dependencies, thus incorporating multi-modal information to learn attention and propagate contexts more accurately.
Journal ArticleDOI

Deep learning with convolutional neural network in radiology

TL;DR: Basic technical knowledge regarding deep learning with CNNs along the actual course is illustrated (collecting data, implementing CNNs, and training and testing phases).
Proceedings ArticleDOI

HarDNet: A Low Memory Traffic Network

TL;DR: In this paper, a Harmonic Densely Connected Network (HDN) was proposed to achieve high efficiency in terms of both low MACs and memory traffic for real-time object detection and semantic segmentation.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Book

Pattern Recognition and Machine Learning

TL;DR: Probability Distributions, linear models for Regression, Linear Models for Classification, Neural Networks, Graphical Models, Mixture Models and EM, Sampling Methods, Continuous Latent Variables, Sequential Data are studied.
Proceedings ArticleDOI

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation

TL;DR: RCNN as discussed by the authors combines CNNs with bottom-up region proposals to localize and segment objects, and when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost.
Book

A wavelet tour of signal processing

TL;DR: An introduction to a Transient World and an Approximation Tour of Wavelet Packet and Local Cosine Bases.
Related Papers (5)