scispace - formally typeset
Open AccessProceedings ArticleDOI

Fully convolutional networks for semantic segmentation

TLDR
The key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning.
Abstract
Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, exceed the state-of-the-art in semantic segmentation. Our key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning. We define and detail the space of fully convolutional networks, explain their application to spatially dense prediction tasks, and draw connections to prior models. We adapt contemporary classification networks (AlexNet [20], the VGG net [31], and GoogLeNet [32]) into fully convolutional networks and transfer their learned representations by fine-tuning [3] to the segmentation task. We then define a skip architecture that combines semantic information from a deep, coarse layer with appearance information from a shallow, fine layer to produce accurate and detailed segmentations. Our fully convolutional network achieves state-of-the-art segmentation of PASCAL VOC (20% relative improvement to 62.2% mean IU on 2012), NYUDv2, and SIFT Flow, while inference takes less than one fifth of a second for a typical image.

read more

Content maybe subject to copyright    Report

Citations
More filters
Book ChapterDOI

Salient Objects in Clutter: Bringing Salient Object Detection to the Foreground

TL;DR: This work identifies a serious design bias of existing SOD datasets which assumes that each image contains at least one clearly outstanding salient object in low clutter, and proposes a new high quality dataset and updates the previous saliency benchmark.
Proceedings ArticleDOI

A deep multi-level network for saliency prediction

TL;DR: This paper proposes an architecture which combines features extracted at different levels of a Convolutional Neural Network (CNN) which outperforms under all evaluation metrics on the SALICON dataset, and achieves competitive results on the MIT300 benchmark.
Proceedings ArticleDOI

Weakly-Supervised Semantic Segmentation by Iteratively Mining Common Object Features

TL;DR: An iterative bottom-up and top-down framework which alternatively expands object regions and optimizes segmentation network and outperforms previous state-of-the-art methods by a large margin is proposed.
Journal ArticleDOI

Deep neural network concepts for background subtraction:A systematic review and comparative evaluation

TL;DR: In this article, the authors provide a review of deep neural network concepts in background subtraction for novices and experts in order to analyze this success and to provide further directions.
Journal ArticleDOI

DeepNIS: Deep Neural Network for Nonlinear Electromagnetic Inverse Scattering

TL;DR: In this article, the authors exploit a connection between the deep neural network (DNN) architecture and the iterative method of nonlinear EM inverse scattering, and propose DeepNIS, which consists of a cascade of multilayer complex-valued residual convolutional neural network modules.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Book

Pattern Recognition and Machine Learning

TL;DR: Probability Distributions, linear models for Regression, Linear Models for Classification, Neural Networks, Graphical Models, Mixture Models and EM, Sampling Methods, Continuous Latent Variables, Sequential Data are studied.
Proceedings ArticleDOI

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation

TL;DR: RCNN as discussed by the authors combines CNNs with bottom-up region proposals to localize and segment objects, and when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost.
Book

A wavelet tour of signal processing

TL;DR: An introduction to a Transient World and an Approximation Tour of Wavelet Packet and Local Cosine Bases.
Related Papers (5)