scispace - formally typeset
Open AccessProceedings ArticleDOI

Fully convolutional networks for semantic segmentation

TLDR
The key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning.
Abstract
Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, exceed the state-of-the-art in semantic segmentation. Our key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning. We define and detail the space of fully convolutional networks, explain their application to spatially dense prediction tasks, and draw connections to prior models. We adapt contemporary classification networks (AlexNet [20], the VGG net [31], and GoogLeNet [32]) into fully convolutional networks and transfer their learned representations by fine-tuning [3] to the segmentation task. We then define a skip architecture that combines semantic information from a deep, coarse layer with appearance information from a shallow, fine layer to produce accurate and detailed segmentations. Our fully convolutional network achieves state-of-the-art segmentation of PASCAL VOC (20% relative improvement to 62.2% mean IU on 2012), NYUDv2, and SIFT Flow, while inference takes less than one fifth of a second for a typical image.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling

TL;DR: A systematic evaluation of generic convolutional and recurrent architectures for sequence modeling concludes that the common association between sequence modeling and recurrent networks should be reconsidered, and convolutionals should be regarded as a natural starting point for sequence modeled tasks.
Posted Content

Aggregated Residual Transformations for Deep Neural Networks

TL;DR: On the ImageNet-1K dataset, it is empirically show that even under the restricted condition of maintaining complexity, increasing cardinality is able to improve classification accuracy and is more effective than going deeper or wider when the authors increase the capacity.
Proceedings ArticleDOI

Learning Deconvolution Network for Semantic Segmentation

TL;DR: A novel semantic segmentation algorithm by learning a deep deconvolution network on top of the convolutional layers adopted from VGG 16-layer net, which demonstrates outstanding performance in PASCAL VOC 2012 dataset.
Posted Content

Least Squares Generative Adversarial Networks

TL;DR: This paper proposes the Least Squares Generative Adversarial Networks (LSGANs) which adopt the least squares loss function for the discriminator, and shows that minimizing the objective function of LSGAN yields minimizing the Pearson X2 divergence.
Proceedings ArticleDOI

Convolutional Pose Machines

TL;DR: In this paper, a convolutional network is incorporated into the pose machine framework for learning image features and image-dependent spatial models for the task of pose estimation, which can implicitly model long-range dependencies between variables in structured prediction tasks such as articulated pose estimation.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Book

Pattern Recognition and Machine Learning

TL;DR: Probability Distributions, linear models for Regression, Linear Models for Classification, Neural Networks, Graphical Models, Mixture Models and EM, Sampling Methods, Continuous Latent Variables, Sequential Data are studied.
Proceedings ArticleDOI

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation

TL;DR: RCNN as discussed by the authors combines CNNs with bottom-up region proposals to localize and segment objects, and when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost.
Book

A wavelet tour of signal processing

TL;DR: An introduction to a Transient World and an Approximation Tour of Wavelet Packet and Local Cosine Bases.
Related Papers (5)