scispace - formally typeset
Open AccessPosted Content

GreedyNASv2: Greedier Search with a Greedy Path Filter

TLDR
GreedyNASv2 as discussed by the authors leverages an explicit path filter to capture the characteristics of paths and directly filter those weak ones, so that the search can be thus implemented on the shrunk space more greedily and efficiently.
Abstract
Training a good supernet in one-shot NAS methods is difficult since the search space is usually considerably huge (\eg, $13^{21}$). In order to enhance the supernet's evaluation ability, one greedy strategy is to sample good paths, and let the supernet lean towards the good ones and ease its evaluation burden as a result. However, in practice the search can be still quite inefficient since the identification of good paths is not accurate enough and sampled paths still scatter around the whole search space. In this paper, we leverage an explicit path filter to capture the characteristics of paths and directly filter those weak ones, so that the search can be thus implemented on the shrunk space more greedily and efficiently. Concretely, based on the fact that good paths are much less than the weak ones in the space, we argue that the label of ``weak paths" will be more confident and reliable than that of ``good paths" in multi-path sampling. In this way, we thus cast the training of path filter in the positive and unlabeled (PU) learning paradigm, and also encourage a \textit{path embedding} as better path/operation representation to enhance the identification capacity of the learned filter. By dint of this embedding, we can further shrink the search space by aggregating similar operations with similar embeddings, and the search can be more efficient and accurate. Extensive experiments validate the effectiveness of the proposed method GreedyNASv2. For example, our obtained GreedyNASv2-L achieves $81.1\%$ Top-1 accuracy on ImageNet dataset, significantly outperforming the ResNet-50 strong baselines.

read more

Citations
More filters
Posted Content

ViTAS: Vision Transformer Architecture Search.

TL;DR: Zhang et al. as mentioned in this paper proposed a cyclic weight-sharing mechanism for token embeddings of the ViTs, which enables each channel could more evenly contribute to all candidate architectures.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

A fast and elitist multiobjective genetic algorithm: NSGA-II

TL;DR: This paper suggests a non-dominated sorting-based MOEA, called NSGA-II (Non-dominated Sorting Genetic Algorithm II), which alleviates all of the above three difficulties, and modify the definition of dominance in order to solve constrained multi-objective problems efficiently.
Book ChapterDOI

Microsoft COCO: Common Objects in Context

TL;DR: A new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding by gathering images of complex everyday scenes containing common objects in their natural context.
Proceedings ArticleDOI

Feature Pyramid Networks for Object Detection

TL;DR: This paper exploits the inherent multi-scale, pyramidal hierarchy of deep convolutional networks to construct feature pyramids with marginal extra cost and achieves state-of-the-art single-model results on the COCO detection benchmark without bells and whistles.