scispace - formally typeset
Open AccessJournal ArticleDOI

Height Aiding, C/N 0 Weighting and Consistency Checking for GNSS NLOS and Multipath Mitigation in Urban Areas

Paul D. Groves, +1 more
- 02 Jul 2013 - 
- Vol. 66, Iss: 05, pp 653-669
TLDR
Three different techniques for mitigating the impact of non-line-of-sight (NLOS) reception and multipath interference on position accuracy without using additional hardware are investigated, testing them using data collected at multiple sites in central London.
Abstract
Multiple global navigation satellite system (GNSS) constellations can dramatically improve the signal availability in dense urban environments. However, accuracy remains a challenge because buildings block, reflect and diffract the signals. This paper investigates three different techniques for mitigating the impact of non-line-of-sight (NLOS) reception and multipath interference on position accuracy without using additional hardware, testing them using data collected at multiple sites in central London. Aiding the position solution using a terrain height database was found to have the biggest impact, improving the horizontal accuracy by 35% and the vertical accuracy by a factor of 4. An 8% improvement in horizontal accuracy was also obtained from weighting the GNSS measurements in the position solution according to the carrier-power-to-noise-density ratio (C/N0). Consistency checking using a conventional sequential elimination technique was found to degrade horizontal positioning performance by 60% because it often eliminated the wrong measurements in cases when multiple signals were affected by NLOS reception or strong multipath interference. A new consistency checking method that compares subsets of measurements performed better, but was still equally likely to improve or degrade the accuracy. This was partly because removing a poor measurement can result in adverse signal geometry, degrading the position accuracy. Based on this, several ways of improving the reliability of consistency checking are proposed.

read more

Content maybe subject to copyright    Report

Citations
More filters

Enhancing Conventional GNSS Positioning with 3D Mapping without Accurate Prior Knowledge

TL;DR: In this article, the authors assess the extent to which the performance of height-aided conventional ranging-based GNSS positioning can be improved by finding the best way of determining which signals are non-line-of-sight (NLOS) or multipath contaminated.
Journal ArticleDOI

Multipath mitigation in GNSS precise point positioning based on trend-surface analysis and multipath hemispherical map

TL;DR: In this article, a trend-surface analysis (T-MHM) algorithm is proposed to mitigate the multipath effect in high-frequency and low-frequency multipath correction.
Journal ArticleDOI

Context-Aware Adaptive Multipath Compensation Based on Channel Pattern Recognition for GNSS Receivers

TL;DR: The possibility of identifying the type of multipath environment and receiver motion (e.g. pedestrian, vehicular) using pattern recognition approaches based on multipath parameters is investigated to allow the receiver to adjust its tracking strategy and optimally tune its tracking parameters to mitigate code multipath effects.
Journal ArticleDOI

Extending Shadow Matching to Tightly-Coupled GNSS/INS Integration System

TL;DR: By further extending the satellite visibility estimation to exclude NLOS measurements and adjust the measurement noise covariance, the proposed 3DMA GNSS/INS tightly-coupled integrated positioning achieves nearly a factor of 3 improvements comparing to the conventional GN SS/INS integration method during the vehicular experiment in the urban canyon.
Dissertation

Positionner par satellite dans les environnements transports. Impact du canal de propagation sur les performances de localisation GNSS.

TL;DR: In this paper, the authors propose a method to estimate dynamique des retards de propagation, which can be used to reduce the imprecision of the estimation of the position.
References
More filters
Journal Article

Global Positioning System : Theory and Applications I

TL;DR: Differential GPS and Integrity Monitoring differential GPS Pseudolites Wide Area Differential GPS Wide Area Augmentation System Receiver Autonomous Integrity Monitoring Integrated Navigation Systems Integration of GPS and Loran-C GPS and Inertial Integration Receiver Aut autonomous Integrity Monitoring Availability for GPS Augmented with Barometric Altimeter Aiding and Clock Coasting
Book

Global positioning system : theory and applications

TL;DR: Differential GPS and Integrity Monitoring Differential GPS Pseudolites Wide Area differential GPS Wide Area Augmentation System Receiver Autonomous Integrity Monitoring Integrated Navigation Systems Integration of GPS and Loran-C GPS and Inertial Integration Receiver Autonomic Integrity Monitoring Availability for GPS Augmented with Barometric Altimeter Aiding and Clock Coasting GPS and Global Navigation Satellite System (GLONASS) GPS Navigation Applications Land Vehicle Navigation and Tracking Marine Applications Applications of the GPS to Air Traffic Control GPS Applications in General Aviation Aircraft Automatic Approach and Landing of Aircraft Using Integrity Beacons Spacecraft Attitude
Journal ArticleDOI

MLESAC: A New Robust Estimator with Application to Estimating Image Geometry

TL;DR: A new robust estimator MLESAC is presented which is a generalization of the RANSAC estimator which adopts the same sampling strategy as RANSac to generate putative solutions, but chooses the solution that maximizes the likelihood rather than just the number of inliers.
Book

Principles of GNSS, Inertial, and Multi-Sensor Integrated Navigation Systems

TL;DR: In this paper, the authors present a single-source reference for navigation systems engineering, providing both an introduction to overall systems operation and an in-depth treatment of architecture, design, and component integration.
Book

Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, Second Edition

Paul D Groves
TL;DR: The second edition of the Artech House book Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems as discussed by the authors offers a current and comprehensive understanding of satellite navigation, inertial navigation, terrestrial radio navigation, dead reckoning, and environmental feature matching.
Related Papers (5)