scispace - formally typeset
Open AccessJournal ArticleDOI

Height Aiding, C/N 0 Weighting and Consistency Checking for GNSS NLOS and Multipath Mitigation in Urban Areas

Paul D. Groves, +1 more
- 02 Jul 2013 - 
- Vol. 66, Iss: 05, pp 653-669
TLDR
Three different techniques for mitigating the impact of non-line-of-sight (NLOS) reception and multipath interference on position accuracy without using additional hardware are investigated, testing them using data collected at multiple sites in central London.
Abstract
Multiple global navigation satellite system (GNSS) constellations can dramatically improve the signal availability in dense urban environments. However, accuracy remains a challenge because buildings block, reflect and diffract the signals. This paper investigates three different techniques for mitigating the impact of non-line-of-sight (NLOS) reception and multipath interference on position accuracy without using additional hardware, testing them using data collected at multiple sites in central London. Aiding the position solution using a terrain height database was found to have the biggest impact, improving the horizontal accuracy by 35% and the vertical accuracy by a factor of 4. An 8% improvement in horizontal accuracy was also obtained from weighting the GNSS measurements in the position solution according to the carrier-power-to-noise-density ratio (C/N0). Consistency checking using a conventional sequential elimination technique was found to degrade horizontal positioning performance by 60% because it often eliminated the wrong measurements in cases when multiple signals were affected by NLOS reception or strong multipath interference. A new consistency checking method that compares subsets of measurements performed better, but was still equally likely to improve or degrade the accuracy. This was partly because removing a poor measurement can result in adverse signal geometry, degrading the position accuracy. Based on this, several ways of improving the reliability of consistency checking are proposed.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Resilient Pseudorange Error Prediction and Correction for GNSS Positioning in Urban Areas

TL;DR: In this article , the authors proposed two resilient pseudorange error prediction and correction strategies to improve the GNSS positioning accuracy in urban environments, considering the carrier-to-noise density (C/N0), satellite elevation angle and local positional information.
Journal ArticleDOI

Vector Tracking Based on Factor Graph Optimization for GNSS NLOS Bias Estimation and Correction

TL;DR: In this article , the estimation and correction of non-line-of-sight (NLOS) induced errors within the vector tracking (VT) framework was investigated. But the estimation of NLOS-induced bias has not been thoroughly investigated in the VT framework.
Proceedings ArticleDOI

Approximate Maximum Likelihood Estimation Using a 3D GNSS Simulator for Positioning in MP/NLOS Conditions

TL;DR: This paper proposes a methodology of constructive use of NLOS signals, instead of their elimination, to compensate for the NLOS errors using a 3D GNSS simulator to predict the measurements bias and integrate them as observations in the estimation method.
Journal ArticleDOI

Improved weighting scheme using consumer-level GNSS L5/E5a/B2a pseudorange measurements in the urban area

TL;DR: Experimental results and analyses indicate that the developed DFE-CCWLS method can significantly improve the positioning accuracy, achieving the root-mean-square error less than 10 m for most of the urban scenarios.
References
More filters
Journal Article

Global Positioning System : Theory and Applications I

TL;DR: Differential GPS and Integrity Monitoring differential GPS Pseudolites Wide Area Differential GPS Wide Area Augmentation System Receiver Autonomous Integrity Monitoring Integrated Navigation Systems Integration of GPS and Loran-C GPS and Inertial Integration Receiver Aut autonomous Integrity Monitoring Availability for GPS Augmented with Barometric Altimeter Aiding and Clock Coasting
Book

Global positioning system : theory and applications

TL;DR: Differential GPS and Integrity Monitoring Differential GPS Pseudolites Wide Area differential GPS Wide Area Augmentation System Receiver Autonomous Integrity Monitoring Integrated Navigation Systems Integration of GPS and Loran-C GPS and Inertial Integration Receiver Autonomic Integrity Monitoring Availability for GPS Augmented with Barometric Altimeter Aiding and Clock Coasting GPS and Global Navigation Satellite System (GLONASS) GPS Navigation Applications Land Vehicle Navigation and Tracking Marine Applications Applications of the GPS to Air Traffic Control GPS Applications in General Aviation Aircraft Automatic Approach and Landing of Aircraft Using Integrity Beacons Spacecraft Attitude
Journal ArticleDOI

MLESAC: A New Robust Estimator with Application to Estimating Image Geometry

TL;DR: A new robust estimator MLESAC is presented which is a generalization of the RANSAC estimator which adopts the same sampling strategy as RANSac to generate putative solutions, but chooses the solution that maximizes the likelihood rather than just the number of inliers.
Book

Principles of GNSS, Inertial, and Multi-Sensor Integrated Navigation Systems

TL;DR: In this paper, the authors present a single-source reference for navigation systems engineering, providing both an introduction to overall systems operation and an in-depth treatment of architecture, design, and component integration.
Book

Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, Second Edition

Paul D Groves
TL;DR: The second edition of the Artech House book Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems as discussed by the authors offers a current and comprehensive understanding of satellite navigation, inertial navigation, terrestrial radio navigation, dead reckoning, and environmental feature matching.
Related Papers (5)