scispace - formally typeset
Open AccessJournal ArticleDOI

High-Performance Pyrochlore-Type Yttrium Ruthenate Electrocatalyst for Oxygen Evolution Reaction in Acidic Media

Reads0
Chats0
TLDR
A pyrochlore yttrium ruthenate (Y2Ru2O7-δ) electrocatalyst that has significantly enhanced performance toward OER in acid media over the best-known catalysts, with an onset overpotential of 190 mV and high stability in 0.1 M perchloric acid solution.
Abstract
Development of acid-stable electrocatalysts with low overpotential for oxygen evolution reaction (OER) is a major challenge to produce hydrogen directly from water. We report in this paper a pyrochlore yttrium ruthenate (Y2Ru2O7−δ) electrocatalyst that has significantly enhanced performance toward OER in acid media over the best-known catalysts, with an onset overpotential of 190 mV and high stability in 0.1 M perchloric acid solution. X-ray absorption near-edge structure (XANES) indicates Y2Ru2O7−δ electrocatalyst had a low valence state that favors the high OER activity. Density functional theory (DFT) calculation shows this pyrochlore has lower band center energy for the overlap between Ru 4d and O 2p orbitals and is therefore more stable Ru–O bond than RuO2, highlighting the effect of yttrium on the enhancement in stability. The Y2Ru2O7−δ pyrochlore is also free of expensive iridium metal and thus is a cost-effective candidate for practical applications.

read more

Citations
More filters
Journal ArticleDOI

Efficient Ammonia Electrosynthesis from Nitrate on Strained Ruthenium Nanoclusters

TL;DR: It is reported that room-temperature nitrate electroreduction catalyzed by strained ruthenium nanoclusters generates ammonia at a higher rate than the Haber-Bosch process, highlighting the potential of nitrate Electroreduction in real-world, low-tem temperature ammonia synthesis.
Journal ArticleDOI

Recent advances and prospective in ruthenium-based materials for electrochemical water splitting

TL;DR: In this article, a general description about water splitting is presented to understand the reaction mechanism and proposed scaling relations toward activities, and key stability issues for Ru-based materials are further given.
Journal ArticleDOI

Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media

TL;DR: An Iridium-free and low ruthenium-content oxide material derived from metal-organic framework with remarkable oxygen evolution reaction performance in acidic condition is reported, highlighting the influence of chromium promoter on the enhancement in both activity and stability.
References
More filters
Journal ArticleDOI

Solar Water Splitting Cells

TL;DR: The biggest challenge is whether or not the goals need to be met to fully utilize solar energy for the global energy demand can be met in a costeffective way on the terawatt scale.
Journal ArticleDOI

Combining theory and experiment in electrocatalysis: Insights into materials design

TL;DR: A unified theoretical framework highlights the need for catalyst design strategies that selectively stabilize distinct reaction intermediates relative to each other, and opens up opportunities and approaches to develop higher-performance electrocatalysts for a wide range of reactions.
Journal ArticleDOI

Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices

TL;DR: A standard protocol is used as a primary screen for evaluating the activity, short-term (2 h) stability, and electrochemically active surface area (ECSA) of 18 and 26 electrocatalysts for the hydrogen evolution reaction (HER and OER) under conditions relevant to an integrated solar water-splitting device in aqueous acidic or alkaline solution.
Journal ArticleDOI

Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions

TL;DR: This study shows that these r-RuO2 and r-IrO2 NPs can serve as a benchmark in the development of active OER catalysts for electrolyzers, metal-air batteries, and photoelectrochemical water splitting applications.
Related Papers (5)