scispace - formally typeset
Journal ArticleDOI

Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres

Reads0
Chats0
TLDR
A conductive composite mat of silver nanoparticles and rubber fibres that allows the formation of highly stretchable circuits through a fabrication process that is compatible with any substrate and scalable for large-area applications is introduced.
Abstract
A highly stetchable non-woven mat with printed conductive circuits is fabricated by embedding silver nanoparticles in electrospun fibres.

read more

Citations
More filters
Journal ArticleDOI

25th Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief History, Design Considerations, and Recent Progress

TL;DR: Electronic networks comprised of flexible, stretchable, and robust devices that are compatible with large-area implementation and integrated with multiple functionalities is a testament to the progress in developing an electronic skin akin to human skin.
Journal ArticleDOI

Fiber‐Based Wearable Electronics: A Review of Materials, Fabrication, Devices, and Applications

TL;DR: This article attempts to critically review the current state-of-arts with respect to materials, fabrication techniques, and structural design of devices as well as applications of the fiber-based wearable electronic products.
Journal ArticleDOI

Embedded 3D Printing of Strain Sensors within Highly Stretchable Elastomers

TL;DR: A new method, embedded-3D printing (e-3DP), is reported for fabricating strain sensors within highly conformal and extensible elastomeric matrices.
Journal ArticleDOI

The rise of plastic bioelectronics

TL;DR: Plastic bioelectronics is a research field that takes advantage of the inherent properties of polymers and soft organic electronics for applications at the interface of biology and electronics, which are soft, stretchable and mechanically conformable.
Journal ArticleDOI

Stretchable and Soft Electronics using Liquid Metals.

TL;DR: The use of liquid metals based on gallium for soft and stretchable electronics is discussed, and these metals can be used actively to form memory devices, sensors, and diodes that are completely built from soft materials.
References
More filters
Book

Introduction to percolation theory

TL;DR: In this paper, a scaling solution for the Bethe lattice is proposed for cluster numbers and a scaling assumption for cluster number scaling assumptions for cluster radius and fractal dimension is proposed.
Book

Introduction to percolation theory

TL;DR: In this article, a scaling solution for the Bethe lattice is proposed for cluster numbers and a scaling assumption for cluster number scaling assumptions for cluster radius and fractal dimension is proposed.
Journal ArticleDOI

Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition

TL;DR: The direct synthesis of three-dimensional foam-like graphene macrostructures, which are called graphene foams (GFs), by template-directed chemical vapour deposition is reported, demonstrating the great potential of GF/poly(dimethyl siloxane) composites for flexible, foldable and stretchable conductors.
Journal ArticleDOI

Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes

TL;DR: Transparent, conducting spray-deposited films of single-walled carbon nanotubes are reported that can be rendered stretchable by applying strain along each axis, and then releasing this strain.
Journal ArticleDOI

A stretchable carbon nanotube strain sensor for human-motion detection

TL;DR: A class of wearable and stretchable devices fabricated from thin films of aligned single-walled carbon nanotubes capable of measuring strains up to 280% with high durability, fast response and low creep is reported.
Related Papers (5)