scispace - formally typeset
Book ChapterDOI

Hydrogen-fueled internal combustion engines

Sebastian Verhelst, +2 more
- pp 1002-1019
Reads0
Chats0
TLDR
The types of sensors reviewed in this chapter are (1) room-temperature hydrogen leak sensors; (2) thermometers, particularly useful at low temperature; (3) liquid hydrogen volume and mass gauges; and (4) para/ortho hydrogen ratiometers as mentioned in this paper.
Abstract
Four types of hydrogen detectors are used by researchers, engineers, and manufacturers today, and if hydrogen continues to play a role in emerging alternative energy sources, there will be exponential growth in the use and need for more advanced and more robust devices in the future. The types of sensors reviewed in this chapter are (1) room-temperature hydrogen leak sensors; (2) thermometers, particularly useful at low temperature; (3) liquid hydrogen volume and mass gauges; and (4) para/ortho hydrogen ratiometers.

read more

Citations
More filters
Journal ArticleDOI

Ammonia for power

TL;DR: In this article, the authors highlight previous influential studies and ongoing research to use this chemical as a viable energy vector for power applications, emphasizing the challenges that each of the reviewed technologies faces before implementation and commercial deployment is achieved at a larger scale.
Journal ArticleDOI

Hydrogen as an energy carrier: Prospects and challenges

TL;DR: In this article, the feasibility of adopting hydrogen as a key energy carrier and fuel source in the near future has been discussed and it is shown that hydrogen has several advantages, as well as few drawbacks in using for the above purposes.
Journal ArticleDOI

Methanol as a fuel for internal combustion engines

TL;DR: In this paper, the use of methanol as a pure fuel or a blend component for internal combustion engines (ICEs) is discussed, highlighting the differences with fuels such as ethanol and gasoline.
Journal ArticleDOI

Alternative fuels for internal combustion engines

TL;DR: In this article, a review of potential alternative fuels for automotive engine application for both spark ignition (SI) and compression ignition (CI) engines is presented, which includes applications of alternative fuels in advanced combustion research applications.
Journal ArticleDOI

Recent progress in the use of hydrogen as a fuel for internal combustion engines

TL;DR: In this paper, the authors review the advancements made in plotting the possibilities offered by direct injection of hydrogen, in-cylinder heat transfer, modeling and combustion strategies (on an engine as well as vehicle level).
References
More filters
Book

Internal combustion engine fundamentals

TL;DR: In this article, the authors describe real engine flow and combustion processes, as well as engine operating characteristics and their operation, including engine design and operating parameters, engine characteristics, and operating characteristics.
Journal ArticleDOI

Mechanism and modeling of nitrogen chemistry in combustion

TL;DR: In this article, the mechanisms and rate parameters for the gas-phase reactions of nitrogen compounds that are applicable to combustion-generated air pollution are discussed and illustrated by comparison of results from detailed kinetics calculations with experimental data.
Journal ArticleDOI

A comprehensive modeling study of hydrogen oxidation

TL;DR: A detailed kinetic mechanism has been developed to simulate the combustion of H2/O2 mixtures, over a wide range of temperatures, pressures, and equivalence ratios as discussed by the authors.
Related Papers (5)