scispace - formally typeset
Book ChapterDOI

I have a DREAM!: differentially private smart metering

TLDR
This paper presents a new privacy-preserving smart metering system that is private under the differential privacy model and therefore provides strong and provable guarantees.
Abstract
This paper presents a new privacy-preserving smart metering system. Our scheme is private under the differential privacy model and therefore provides strong and provable guarantees.With our scheme, an (electricity) supplier can periodically collect data from smart meters and derive aggregated statistics without learning anything about the activities of individual households. For example, a supplier cannot tell from a user's trace whether or when he watched TV or turned on heating. Our scheme is simple, efficient and practical. Processing cost is very limited: smart meters only have to add noise to their data and encrypt the results with an efficient stream cipher.

read more

Citations
More filters
Proceedings ArticleDOI

Practical Secure Aggregation for Privacy-Preserving Machine Learning

TL;DR: In this paper, the authors proposed a secure aggregation of high-dimensional data for federated deep neural networks, which allows a server to compute the sum of large, user-held data vectors from mobile devices in a secure manner without learning each user's individual contribution.
Journal ArticleDOI

Security and Privacy in Decentralized Energy Trading Through Multi-Signatures, Blockchain and Anonymous Messaging Streams

TL;DR: This paper has implemented a proof-of-concept for decentralized energy trading system using blockchain technology, multi-signatures, and anonymous encrypted messaging streams, enabling peers to anonymously negotiate energy prices and securely perform trading transactions.
Posted Content

Practical Secure Aggregation for Privacy Preserving Machine Learning.

TL;DR: This protocol allows a server to compute the sum of large, user-held data vectors from mobile devices in a secure manner, and can be used, for example, in a federated learning setting, to aggregate user-provided model updates for a deep neural network.
Proceedings ArticleDOI

A Hybrid Approach to Privacy-Preserving Federated Learning

TL;DR: This paper presents an alternative approach that utilizes both differential privacy and SMC to balance these trade-offs and enables the growth of noise injection as the number of parties increases without sacrificing privacy while maintaining a pre-defined rate of trust.
References
More filters
Journal ArticleDOI

New Directions in Cryptography

TL;DR: This paper suggests ways to solve currently open problems in cryptography, and discusses how the theories of communication and computation are beginning to provide the tools to solve cryptographic problems of long standing.
Book ChapterDOI

Calibrating noise to sensitivity in private data analysis

TL;DR: In this article, the authors show that for several particular applications substantially less noise is needed than was previously understood to be the case, and also show the separation results showing the increased value of interactive sanitization mechanisms over non-interactive.
Journal Article

Calibrating noise to sensitivity in private data analysis

TL;DR: The study is extended to general functions f, proving that privacy can be preserved by calibrating the standard deviation of the noise according to the sensitivity of the function f, which is the amount that any single argument to f can change its output.
Journal ArticleDOI

Nonintrusive appliance load monitoring

TL;DR: In this paper, a nonintrusive appliance load monitor that determines the energy consumption of individual appliances turning on and off in an electric load, based on detailed analysis of the current and voltage of the total load, as measured at the interface to the power source is described.
Book ChapterDOI

Our data, ourselves: privacy via distributed noise generation

TL;DR: In this paper, a distributed protocol for generating shares of random noise, secure against malicious participants, was proposed, where the purpose of the noise generation is to create a distributed implementation of the privacy-preserving statistical databases described in recent papers.