scispace - formally typeset
Journal ArticleDOI

Immersed particle method for fluid–structure interaction

Reads0
Chats0
TLDR
In this paper, a method for treating fluid-structure interaction of fracturing structures under impulsive loads is described, which does not require any modifications when the structure fails and allows fluid to flow through openings between crack surfaces.
Abstract
A method for treating fluid-structure interaction of fracturing structures under impulsive loads is described. The coupling method is simple and does not require any modifications when the structure fails and allows fluid to flow through openings between crack surfaces. Both the fluid and the structure are treated by meshfree methods. For the structure, a Kirchhoff-Love shell theory is adopted and the cracks are treated by introducing either discrete (cracking particle method) or continuous (partition of unity-based method) discontinuities into the approximation. Coupling is realized by a master-slave scheme where the structure is slave to the fluid. The method is aimed at problems with high-pressure and low-velocity fluids, and is illustrated by the simulation of three problems involving fracturing cylindrical shells coupled with fluids.

read more

Citations
More filters
Journal ArticleDOI

Isogeometric analysis: an overview and computer implementation aspects

TL;DR: An introduction to IGA applied to simple analysis problems and the related computer implementation aspects is presented, and implementation of the extended IGA which incorporates enrichment functions through the partition of unity method (PUM) is presented.
Journal ArticleDOI

Rotation free isogeometric thin shell analysis using PHT-splines

TL;DR: A novel approach for isogeometric analysis of thin shells using polynomial splines over hierarchical T-meshes (PHT-splines) that achieves C1 continuity, so the Kirchhoff–Love theory can be used in pristine form.
Journal ArticleDOI

Phase-field modeling of fracture in linear thin shells

TL;DR: In this paper, a phase-field model for fracture in Kirchoff-love thin shells using the local maximum-entropy (LME) mesh-free method is presented, which does not require an explicit representation and tracking, which is advantage over techniques as the extended finite element method that requires tracking of the crack paths.
Journal ArticleDOI

Phantom-node method for shell models with arbitrary cracks

TL;DR: In this paper, a phantom-node method is developed for three-node shell elements to describe cracks, which can treat arbitrary cracks independently of the mesh mesh and may cut elements completely or partially.
References
More filters
Journal ArticleDOI

A finite element method for crack growth without remeshing

TL;DR: In this article, a displacement-based approximation is enriched near a crack by incorporating both discontinuous elds and the near tip asymptotic elds through a partition of unity method.
Journal ArticleDOI

Element‐free Galerkin methods

TL;DR: In this article, an element-free Galerkin method which is applicable to arbitrary shapes but requires only nodal data is applied to elasticity and heat conduction problems, where moving least-squares interpolants are used to construct the trial and test functions for the variational principle.
Journal ArticleDOI

Elastic crack growth in finite elements with minimal remeshing

TL;DR: In this article, a minimal remeshing finite element method for crack growth is presented, where Discontinuous enrichment functions are added to the finite element approximation to account for the presence of the crack.
Journal ArticleDOI

The immersed boundary method

TL;DR: This paper is concerned with the mathematical structure of the immersed boundary (IB) method, which is intended for the computer simulation of fluid–structure interaction, especially in biological fluid dynamics.
Related Papers (5)