scispace - formally typeset
Journal ArticleDOI

Ionic Liquid Electrolytes for Lithium–Sulfur Batteries

TLDR
In this paper, a variety of binary mixtures of aprotic ionic liquids (ILs) and lithium salts were thoroughly studied as electrolytes for rechargeable lithium-sulfur (Li-S) batteries.
Abstract
A variety of binary mixtures of aprotic ionic liquids (ILs) and lithium salts were thoroughly studied as electrolytes for rechargeable lithium–sulfur (Li–S) batteries. The saturation solubility of sulfur and lithium polysulfides (Li2Sm), the active materials in the Li–S battery, in the electrolytes was quantitatively determined, and the performance of the Li–S battery using the electrolytes was also investigated. Although the solubility of nonionic sulfur was low in all of the electrolytes evaluated, the solubility of Li2Sm in the IL-based electrolyte was strongly dependent on the anionic structure, and the difference in the solubility could be rationalized in terms of the donor ability of the IL solvent. Dissolution of Li2Sm in the ILs with strong donor ability was comparable to that achieved with typical organic electrolytes; the strongly donating IL electrolyte did not prevent redox shuttle reaction in the Li–S cells. The battery performance was also influenced by unfavorable side reactions of the anio...

read more

Citations
More filters
Journal ArticleDOI

Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes

TL;DR: In this article, a review of recent developments in tackling the dissolution of polysulfides, a fundamental problem in Li-S batteries, focusing on both experimental and computational approaches to tailor the chemical interactions between the sulfur host materials and poly sulfides is presented.
Journal ArticleDOI

A Review of Solid Electrolyte Interphases on Lithium Metal Anode.

TL;DR: A multidisciplinary approach is highly required to enable the formation of robust SEI for highly efficient energy storage systems.
Journal ArticleDOI

Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices

TL;DR: Various application of ILs are reviewed by focusing on their use as electrolyte materials for Li/Na ion batteries, Li-sulfur batteries,Li-oxygen batteries, and nonhumidifiedfuel cells and as carbon precursors for electrode catalysts of fuel cells and electrode materials for batteries and supercapacitors.
Journal ArticleDOI

Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries.

TL;DR: This review summarizes the current trends and provides guidelines towards achieving next-generation rechargeable Li and Li-ion batteries with higher energy densities, better safety characteristics, lower cost and longer cycle life by addressing batteries using high-voltage cathodes, metal fluoride electrodes, chalcogen electrodes, Li metal anodes, high-capacity anodes as well as useful electrolyte solutions.
References
More filters
Journal ArticleDOI

Li-O2 and Li-S batteries with high energy storage.

TL;DR: The energy that can be stored in Li-air and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed.
Journal ArticleDOI

A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries

TL;DR: In this paper, the authors report the feasibility to approach such capacities by creating highly ordered interwoven composites, where conductive mesoporous carbon framework precisely constrains sulphur nanofiller growth within its channels and generates essential electrical contact to the insulating sulphur.
Journal ArticleDOI

Ionic liquids as electrolytes

TL;DR: In this paper, the physical and chemical properties of room temperature ionic liquids (RTILs) are reviewed from the point of view of their possible application as electrolytes in electrochemical processes and devices.
Related Papers (5)