scispace - formally typeset
Open AccessJournal ArticleDOI

Isolated and dynamical horizons and their applications

TLDR
A new, quasi-local framework was introduced to analyze diverse facets of black holes in a unified manner that has introduced a more physical setting for black hole thermodynamics, suggested a phenomenological model for hairy black holes, provided novel techniques to extract physics from numerical simulations, and led to new laws governing the dynamics ofblack holes in exact general relativity.
Abstract
Over the past three decades, black holes have played an important role in quantum gravity, mathematical physics, numerical relativity and gravitational wave phenomenology. However, conceptual settings and mathematical models used to discuss them have varied considerably from one area to another. Over the last five years a new, quasi-local framework was introduced to analyze diverse facets of black holes in a unified manner. In this framework, evolving black holes are modelled by dynamical horizons and black holes in equilibrium by isolated horizons. We review basic properties of these horizons and summarize applications to mathematical physics, numerical relativity, and quantum gravity. This paradigm has led to significant generalizations of several results in black hole physics. Specifically, it has introduced a more physical setting for black hole thermodynamics and for black hole entropy calculations in quantum gravity, suggested a phenomenological model for hairy black holes, provided novel techniques to extract physics from numerical simulations, and led to new laws governing the dynamics of black holes in exact general relativity.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

A covariant holographic entanglement entropy proposal

TL;DR: In this paper, a covariant generalization of the holographic entanglement entropy proposal of hep-th/0603001 is proposed to understand the time-dependence of entropy in generic quantum field theories.
Journal ArticleDOI

The Spin-Foam Approach to Quantum Gravity

TL;DR: In this paper, the present status of the spin-foam approach to the quantization of gravity is reviewed and a pedagogical presentation of new models for four-dimensional quantum gravity is paided to the recently introduced new models.
Journal ArticleDOI

Black-hole entropy from quantum geometry

TL;DR: In this paper, it was shown that the contribution of spins greater than 1/2 to the entropy is not negligible, and the value of the Barbero-Immirzi parameter involved in the spectra of all the geometric and physical operators in this theory is different than previously derived.
Journal ArticleDOI

Coalescence of Black Hole-Neutron Star Binaries

TL;DR: The current status of general relativistic studies for the coalescence of black hole-neutron star (BH-NS) binaries is reviewed and understanding for the merger and/or tidal disruption processes, the criterion for tidal disruption, and the properties of the remnant formed after the tidal disruption are summarized.
Journal ArticleDOI

Asymptotic perfect fluid dynamics as a consequence of AdS/CFT correspondence

TL;DR: In this paper, the authors study the dynamics of strongly interacting gauge-theory matter (modeling quark-gluon plasma) in a boost-invariant setting using the AdS/CFT correspondence.
References
More filters
Journal ArticleDOI

Particle Creation by Black Holes

TL;DR: In this article, it is shown that quantum mechanical effects cause black holes to create and emit particles as if they were hot bodies with temperature, which leads to a slow decrease in the mass of the black hole and to its eventual disappearance.
Book

The Large Scale Structure of Space-Time

TL;DR: In this paper, the authors discuss the General Theory of Relativity in the large and discuss the significance of space-time curvature and the global properties of a number of exact solutions of Einstein's field equations.
Journal ArticleDOI

Black holes and entropy

TL;DR: In this paper, the concept of black-hole entropy was introduced as a measure of information about a black hole interior which is inaccessible to an exterior observer, and it was shown that the entropy is equal to the ratio of the black hole area to the square of the Planck length times a dimensionless constant of order unity.
Book

The Mathematical Theory of Black Holes

TL;DR: In a course of lectures on the underlying mathematical structures of classical gravitation theory given in 1978, Brandon Carter as discussed by the authors began with the statement ‘If I had been asked five years ago to prepare a course for recent developments in classical gravity theory, I would not have hesitated on the classical theory of black holes as a central topic of discussion. But I am grateful to them for their courtesy in assigning to me this privilege.
Journal ArticleDOI

Microscopic origin of the Bekenstein-Hawking entropy

TL;DR: The Bekenstein-Hawking area entropy relation S BH = A 4 was derived for a class of five-dimensional extremal black holes in string theory by counting the degeneracy of BPS solition bound states.