scispace - formally typeset
Journal ArticleDOI

Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays

Reads0
Chats0
TLDR
An effective approach is demonstrated for growing large-area, hexagonally patterned, aligned ZnO nanorods and opens the possibility of creating patterned one-dimensional nanostructures for applications as sensor arrays, piezoelectric antenna arrays, optoelectronic devices, and interconnects.
Abstract
An effective approach is demonstrated for growing large-area, hexagonally patterned, aligned ZnO nanorods. The synthesis uses a catalyst template produced by a self-assembled monolayer of submicron spheres and guided vapor-liquid-solid (VLS) growth on a single crystal alumina substrate. The ZnO nanorods have uniform shape and length, align vertically on the substrate, and are distributed according to the pattern defined by the catalyst template. The nanorods grow along [0001] with side surfaces defined by {2110}. This approach opens the possibility of creating patterned one-dimensional nanostructures for applications as sensor arrays, piezoelectric antenna arrays, optoelectronic devices, and interconnects.

read more

Citations
More filters
Journal ArticleDOI

Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays

TL;DR: This approach has the potential of converting mechanical, vibrational, and/or hydraulic energy into electricity for powering nanodevices.
Journal ArticleDOI

Direct-current nanogenerator driven by ultrasonic waves

TL;DR: A nanowire nanogenerator that is driven by an ultrasonic wave to produce continuous direct-current output and offers a potential solution for powering nanodevices and nanosystems.
Journal ArticleDOI

ZnO - nanostructures, defects, and devices

TL;DR: ZnO has received much attention over the past few years because it has a wide range of properties that depend on doping, including a range of conductivity from metallic to insulating (including n-type and p-type conductivity), high transparency, piezoelectricity, widebandgap semiconductivity, room-temperature ferromagnetism, and huge magneto-optic and chemical-sensing effects.
Journal ArticleDOI

Polymer nanoparticles: Preparation techniques and size-control parameters

TL;DR: In this paper, a review of the preparation of polymer nanoparticles and the crucial parameters involved in techniques designed to obtain the desired properties is presented, and the choice of method depends on a number of factors, such as particle size, particle size distribution, area of application, etc.
Journal ArticleDOI

Nanostructures of zinc oxide

TL;DR: Zinc oxide (ZnO) is a unique material that exhibits semiconducting, piezoelectric, and pyroelectric multiple properties as discussed by the authors, and it has been shown that ZnO is probably the richest family of nanostructures among all materials.
References
More filters
Journal ArticleDOI

Room-temperature ultraviolet nanowire nanolasers

TL;DR: Room-temperature ultraviolet lasing in semiconductor nanowire arrays has been demonstrated and self-organized, <0001> oriented zinc oxide nanowires grown on sapphire substrates were synthesized with a simple vapor transport and condensation process.
Journal ArticleDOI

Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods

TL;DR: In this article, metalorganic vapor phase epitaxial growth and structural and photoluminescent characteristics of ZnO nanorods were reported, and they were grown on Al2O3(00⋅1) substrates at 400°C without employing any metal catalysts usually needed in other methods.
Journal ArticleDOI

Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts

TL;DR: In this article, field effect transistors (FETs) based on single SnO2 and ZnO nanobelts of thicknesses between 10 and 30 nm have been fabricated.
Journal ArticleDOI

Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts

TL;DR: In this article, the divergence of the surface energy due to intrinsic polarization is controlled by controlling the grasps of the ZnO nanostructures, and the divergence can be further reduced.
Journal ArticleDOI

Optical Cavity Effects in ZnO Nanowire Lasers and Waveguides

TL;DR: In this article, the waveguiding behavior of individual zinc oxide (ZnO) nanowires has been characterized with high-resolution optical microscopy, showing a transition from spontaneous to stimulated emission, and analysis of the polarization, line width and line spacing of the laser radiation facilitates identification of the transverse and longitudinal cavity modes and their gain properties.
Related Papers (5)