scispace - formally typeset
Journal ArticleDOI

Learning long-term dependencies with gradient descent is difficult

TLDR
This work shows why gradient based learning algorithms face an increasingly difficult problem as the duration of the dependencies to be captured increases, and exposes a trade-off between efficient learning by gradient descent and latching on information for long periods.
Abstract
Recurrent neural networks can be used to map input sequences to output sequences, such as for recognition, production or prediction problems. However, practical difficulties have been reported in training recurrent neural networks to perform tasks in which the temporal contingencies present in the input/output sequences span long intervals. We show why gradient based learning algorithms face an increasingly difficult problem as the duration of the dependencies to be captured increases. These results expose a trade-off between efficient learning by gradient descent and latching on information for long periods. Based on an understanding of this problem, alternatives to standard gradient descent are considered. >

read more

Citations
More filters
Proceedings ArticleDOI

Simplifying long short-term memory acoustic models for fast training and decoding

TL;DR: To accelerate decoding of LSTMs, it is proposed to apply frame skipping during training, and frame skipping and posterior copying (FSPC) during decoding to resolve two challenges faced by LSTM models: high model complexity and poor decoding efficiency.
Posted Content

Residual Networks are Exponential Ensembles of Relatively Shallow Networks.

TL;DR: This work introduces a novel interpretation of residual networks showing they are exponential ensembles, and suggests that in addition to describing neural networks in terms of width and depth, there is a third dimension: multiplicity, the size of the implicit ensemble.
Journal ArticleDOI

Geospatial Data to Images: A Deep-Learning Framework for Traffic Forecasting

TL;DR: A deep-learning framework is proposed, which transforms geospatial data to images, and then utilizes the state-of-the-art deep- learning methodologies such as Convolutional Neural Network (CNN) and residual networks, and significantly outperforms traditional methods.
Journal ArticleDOI

Deep-Learning-Based Image Reconstruction and Enhancement in Optical Microscopy

TL;DR: An overview of some of the recent work using deep neural networks to advance computational microscopy and sensing systems, also covering their current and future biomedical applications.
References
More filters
Journal ArticleDOI

Optimization by Simulated Annealing

TL;DR: There is a deep and useful connection between statistical mechanics and multivariate or combinatorial optimization (finding the minimum of a given function depending on many parameters), and a detailed analogy with annealing in solids provides a framework for optimization of very large and complex systems.
Book ChapterDOI

Learning internal representations by error propagation

TL;DR: This chapter contains sections titled: The Problem, The Generalized Delta Rule, Simulation Results, Some Further Generalizations, Conclusion.
Book

Learning internal representations by error propagation

TL;DR: In this paper, the problem of the generalized delta rule is discussed and the Generalized Delta Rule is applied to the simulation results of simulation results in terms of the generalized delta rule.
Journal ArticleDOI

A learning algorithm for continually running fully recurrent neural networks

TL;DR: The exact form of a gradient-following learning algorithm for completely recurrent networks running in continually sampled time is derived and used as the basis for practical algorithms for temporal supervised learning tasks.
Journal ArticleDOI

Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithm—Corrigenda for this article is available here

TL;DR: A new global optimization algorithm for functions of continuous variables is presented, derived from the “Simulated Annealing” algorithm recently introduced in combinatorial optimization, which is quite costly in terms of function evaluations, but its cost can be predicted in advance, depending only slightly on the starting point.
Related Papers (5)