scispace - formally typeset
Journal ArticleDOI

Learning long-term dependencies with gradient descent is difficult

TLDR
This work shows why gradient based learning algorithms face an increasingly difficult problem as the duration of the dependencies to be captured increases, and exposes a trade-off between efficient learning by gradient descent and latching on information for long periods.
Abstract
Recurrent neural networks can be used to map input sequences to output sequences, such as for recognition, production or prediction problems. However, practical difficulties have been reported in training recurrent neural networks to perform tasks in which the temporal contingencies present in the input/output sequences span long intervals. We show why gradient based learning algorithms face an increasingly difficult problem as the duration of the dependencies to be captured increases. These results expose a trade-off between efficient learning by gradient descent and latching on information for long periods. Based on an understanding of this problem, alternatives to standard gradient descent are considered. >

read more

Citations
More filters
Journal ArticleDOI

Deep learning in spiking neural networks

TL;DR: The emerging picture is that SNNs still lag behind ANNs in terms of accuracy, but the gap is decreasing, and can even vanish on some tasks, while SNN's typically require many fewer operations and are the better candidates to process spatio-temporal data.
Posted Content

Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training

TL;DR: Deep Gradient Compression (DGC) as mentioned in this paper employs momentum correction, local gradient clipping, momentum factor masking, and warm-up training to preserve accuracy during compression, and achieves a gradient compression ratio from 270x to 600x without losing accuracy.
Proceedings ArticleDOI

Semantically Conditioned LSTM-based Natural Language Generation for Spoken Dialogue Systems

TL;DR: A statistical language generator based on a semantically controlled Long Short-term Memory (LSTM) structure that can learn from unaligned data by jointly optimising sentence planning and surface realisation using a simple cross entropy training criterion, and language variation can be easily achieved by sampling from output candidates.
Proceedings Article

LSTM can Solve Hard Long Time Lag Problems

TL;DR: This work shows that problems used to promote various previous algorithms can be solved more quickly by random weight guessing than by the proposed algorithms, and uses LSTM, its own recent algorithm, to solve a hard problem.
Posted Content

Deep Learning in Bioinformatics

TL;DR: This review will provide valuable insights and serve as a starting point for researchers to apply deep learning approaches in their bioinformatics studies and suggest future research directions.
References
More filters
Journal ArticleDOI

Optimization by Simulated Annealing

TL;DR: There is a deep and useful connection between statistical mechanics and multivariate or combinatorial optimization (finding the minimum of a given function depending on many parameters), and a detailed analogy with annealing in solids provides a framework for optimization of very large and complex systems.
Book ChapterDOI

Learning internal representations by error propagation

TL;DR: This chapter contains sections titled: The Problem, The Generalized Delta Rule, Simulation Results, Some Further Generalizations, Conclusion.
Book

Learning internal representations by error propagation

TL;DR: In this paper, the problem of the generalized delta rule is discussed and the Generalized Delta Rule is applied to the simulation results of simulation results in terms of the generalized delta rule.
Journal ArticleDOI

A learning algorithm for continually running fully recurrent neural networks

TL;DR: The exact form of a gradient-following learning algorithm for completely recurrent networks running in continually sampled time is derived and used as the basis for practical algorithms for temporal supervised learning tasks.
Journal ArticleDOI

Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithm—Corrigenda for this article is available here

TL;DR: A new global optimization algorithm for functions of continuous variables is presented, derived from the “Simulated Annealing” algorithm recently introduced in combinatorial optimization, which is quite costly in terms of function evaluations, but its cost can be predicted in advance, depending only slightly on the starting point.
Related Papers (5)