scispace - formally typeset
Journal ArticleDOI

Learning to select and generalize striking movements in robot table tennis

TLDR
In this paper, a robot learns a set of elementary table tennis hitting movements from a human table tennis teacher by kinesthetic teach-in, which is compiled into a mixture of motor primitives represented by dynamical systems.
Abstract
Learning new motor tasks from physical interactions is an important goal for both robotics and machine learning. However, when moving beyond basic skills, most monolithic machine learning approaches fail to scale. For more complex skills, methods that are tailored for the domain of skill learning are needed. In this paper, we take the task of learning table tennis as an example and present a new framework that allows a robot to learn cooperative table tennis from physical interaction with a human. The robot first learns a set of elementary table tennis hitting movements from a human table tennis teacher by kinesthetic teach-in, which is compiled into a set of motor primitives represented by dynamical systems. The robot subsequently generalizes these movements to a wider range of situations using our mixture of motor primitives approach. The resulting policy enables the robot to select appropriate motor primitives as well as to generalize between them. Finally, the robot plays with a human table tennis partner and learns online to improve its behavior. We show that the resulting setup is capable of playing table tennis using an anthropomorphic robot arm.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Reinforcement learning in robotics: A survey

TL;DR: This article attempts to strengthen the links between the two research communities by providing a survey of work in reinforcement learning for behavior generation in robots by highlighting both key challenges in robot reinforcement learning as well as notable successes.

Reinforcement Learning in Robotics: A Survey.

Jens Kober, +1 more
TL;DR: A survey of work in reinforcement learning for behavior generation in robots can be found in this article, where the authors highlight key challenges in robot reinforcement learning as well as notable successes and discuss the role of algorithms, representations and prior knowledge in achieving these successes.
Journal ArticleDOI

Deep Reinforcement Learning for Multiagent Systems: A Review of Challenges, Solutions, and Applications

TL;DR: A survey of different approaches to problems related to multiagent deep RL (MADRL) is presented, including nonstationarity, partial observability, continuous state and action spaces, multiagent training schemes, and multiagent transfer learning.
Book

An Algorithmic Perspective on Imitation Learning

TL;DR: Imitation learning as discussed by the authors is a generalization of reinforcement learning, where a teacher can demonstrate a desired behavior rather than attempting to manually engineer it, which is referred to as imitation learning.
Journal ArticleDOI

Imitation Learning: A Survey of Learning Methods

TL;DR: This article surveys imitation learning methods and presents design options in different steps of the learning process, and extensively discusses combining imitation learning approaches using different sources and methods, as well as incorporating other motion learning methods to enhance imitation.
References
More filters
Book

Pattern Recognition and Machine Learning

TL;DR: Probability Distributions, linear models for Regression, Linear Models for Classification, Neural Networks, Graphical Models, Mixture Models and EM, Sampling Methods, Continuous Latent Variables, Sequential Data are studied.
Journal ArticleDOI

Pattern Recognition and Machine Learning

Radford M. Neal
- 01 Aug 2007 - 
TL;DR: This book covers a broad range of topics for regular factorial designs and presents all of the material in very mathematical fashion and will surely become an invaluable resource for researchers and graduate students doing research in the design of factorial experiments.
Book

Gaussian Processes for Machine Learning

TL;DR: The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics, and deals with the supervised learning problem for both regression and classification.
Book

Pattern Recognition and Machine Learning (Information Science and Statistics)

TL;DR: Looking for competent reading resources?
Journal ArticleDOI

Adaptive mixtures of local experts

TL;DR: A new supervised learning procedure for systems composed of many separate networks, each of which learns to handle a subset of the complete set of training cases, which is demonstrated to be able to be solved by a very simple expert network.
Related Papers (5)