scispace - formally typeset
Open AccessJournal ArticleDOI

Legacy impacts of all‐time anthropogenic emissions on the global mercury cycle

Reads0
Chats0
TLDR
In this article, a global biogeochemical model with fully coupled atmospheric, terrestrial, and oceanic Hg reservoirs is presented to better understand human influence on Hg cycling and timescales for responses.
Abstract
[1] Elevated mercury (Hg) in marine and terrestrial ecosystems is a global health concern because of the formation of toxic methylmercury. Humans have emitted Hg to the atmosphere for millennia, and this Hg has deposited and accumulated into ecosystems globally. Here we present a global biogeochemical model with fully coupled atmospheric, terrestrial, and oceanic Hg reservoirs to better understand human influence on Hg cycling and timescales for responses. We drive the model with a historical inventory of anthropogenic emissions from 2000 BC to present. Results show that anthropogenic perturbations introduced to surface reservoirs (atmosphere, ocean, or terrestrial) accumulate and persist in the subsurface ocean for decades to centuries. The simulated present-day atmosphere is enriched by a factor of 2.6 relative to 1840 levels, consistent with sediment archives, and by a factor of 7.5 relative to natural levels (2000 BC). Legacy anthropogenic Hg re-emitted from surface reservoirs accounts for 60% of present-day atmospheric deposition, compared to 27% from primary anthropogenic emissions, and 13% from natural sources. We find that only 17% of the present-day Hg in the surface ocean is natural and that half of its anthropogenic enrichment originates from pre-1950 emissions. Although Asia is presently the dominant contributor to primary anthropogenic emissions, only 17% of the surface ocean reservoir is of Asian anthropogenic origin, as compared to 30% of North American and European origin. The accumulated burden of legacy anthropogenic Hg means that future deposition will increase even if primary anthropogenic emissions are held constant. Aggressive global Hg emission reductions will be necessary just to maintain oceanic Hg concentrations at present levels.

read more

Content maybe subject to copyright    Report

Figures
Citations
More filters
Journal ArticleDOI

Mercury as a Global Pollutant: Sources, Pathways, and Effects

TL;DR: Understanding of sources, atmosphere-land-ocean Hg dynamics and health effects are synthesized, and integration of Hg science with national and international policy efforts is needed to target efforts and evaluate efficacy.
Journal ArticleDOI

Biomagnification of Mercury in Aquatic Food Webs: A Worldwide Meta-Analysis

TL;DR: In this article, a simple linear regression between log10 transformed mercury (Hg) concentration and stable nitrogen isotope values (δ15N), hereafter called trophic magnification slope (TMS), was used to represent the overall degree of Hg biomagnification.
Journal ArticleDOI

A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use

TL;DR: Estimates of gaseous Hg0 emissions to the atmosphere over land, long considered a critical Hg source, have been revised downward, and most terrestrial environments now are considered net sinks of atmospheric Hg due to substantial Hg uptake by plants.
Journal ArticleDOI

A global ocean inventory of anthropogenic mercury based on water column measurements

TL;DR: In this paper, the authors present an estimate of the total amount and spatial distribution of anthropogenic mercury in the global ocean based on oceanographic measurements of mercury and related parameters from several expeditions including data from recent GEOTRACES cruises.
Journal ArticleDOI

Mercury physicochemical and biogeochemical transformation in the atmosphere and at atmospheric interfaces: a review and future directions.

TL;DR: Atmosphere and at Atmospheric Interfaces: A Review and Future Directions Parisa A. Ariya, Marc Amyot, Ashu Dastoor, Daniel Deeds, Aryeh Feinberg, Gregor Kos, Andrei Ryjkov, Kirill Semeniuk, M. Subir, and Kenjiro Toyota are authors.
References
More filters
Journal ArticleDOI

Quantifying uncertainties in the global mass balance of mercury

TL;DR: In this paper, a spatially resolved global multimedia model (WorM3) was developed to quantitatively describe the fate of mercury at a process level, and an uncertainty analysis was conducted on its unit-world variant which computes similar global estimates.
Journal ArticleDOI

Recent paleorecords document rising mercury contamination in Lake Tanganyika

TL;DR: In this paper, the authors used sediment cores collected from two contrasting depositional environments: the Kalya Platform, located mid-lake and more removed from watershed impacts, and the Nyasanga/Kahama River delta region, located close to the lake's shoreline north of Kigoma.
Journal ArticleDOI

Blood Total Mercury and Fish Consumption in the Korean General Population in KNHANES III, 2005

Nam-Soo Kim, +1 more
- 01 Jan 2011 - 
TL;DR: In this article, the association between the blood total mercury concentration and fish consumption in the Korean general adult population using a representative sample was assessed using a study conducted by Choi et al. They found that a high consumption of fish increased the blood mercury level by only 18%.
Related Papers (5)