scispace - formally typeset
Open AccessJournal ArticleDOI

A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use

Reads0
Chats0
TLDR
Estimates of gaseous Hg0 emissions to the atmosphere over land, long considered a critical Hg source, have been revised downward, and most terrestrial environments now are considered net sinks of atmospheric Hg due to substantial Hg uptake by plants.
Abstract
We review recent progress in our understanding of the global cycling of mercury (Hg), including best estimates of Hg concentrations and pool sizes in major environmental compartments and exchange processes within and between these reservoirs. Recent advances include the availability of new global datasets covering areas of the world where environmental Hg data were previously lacking; integration of these data into global and regional models is continually improving estimates of global Hg cycling. New analytical techniques, such as Hg stable isotope characterization, provide novel constraints of sources and transformation processes. The major global Hg reservoirs that are, and continue to be, affected by anthropogenic activities include the atmosphere (4.4–5.3 Gt), terrestrial environments (particularly soils: 250–1000 Gg), and aquatic ecosystems (e.g., oceans: 270–450 Gg). Declines in anthropogenic Hg emissions between 1990 and 2010 have led to declines in atmospheric Hg0 concentrations and HgII wet deposition in Europe and the US (− 1.5 to − 2.2% per year). Smaller atmospheric Hg0 declines (− 0.2% per year) have been reported in high northern latitudes, but not in the southern hemisphere, while increasing atmospheric Hg loads are still reported in East Asia. New observations and updated models now suggest high concentrations of oxidized HgII in the tropical and subtropical free troposphere where deep convection can scavenge these HgII reservoirs. As a result, up to 50% of total global wet HgII deposition has been predicted to occur to tropical oceans. Ocean Hg0 evasion is a large source of present-day atmospheric Hg (approximately 2900 Mg/year; range 1900–4200 Mg/year). Enhanced seawater Hg0 levels suggest enhanced Hg0 ocean evasion in the intertropical convergence zone, which may be linked to high HgII deposition. Estimates of gaseous Hg0 emissions to the atmosphere over land, long considered a critical Hg source, have been revised downward, and most terrestrial environments now are considered net sinks of atmospheric Hg due to substantial Hg uptake by plants. Litterfall deposition by plants is now estimated at 1020–1230 Mg/year globally. Stable isotope analysis and direct flux measurements provide evidence that in many ecosystems Hg0 deposition via plant inputs dominates, accounting for 57–94% of Hg in soils. Of global aquatic Hg releases, around 50% are estimated to occur in China and India, where Hg drains into the West Pacific and North Indian Oceans. A first inventory of global freshwater Hg suggests that inland freshwater Hg releases may be dominated by artisanal and small-scale gold mining (ASGM; approximately 880 Mg/year), industrial and wastewater releases (220 Mg/year), and terrestrial mobilization (170–300 Mg/year). For pelagic ocean regions, the dominant source of Hg is atmospheric deposition; an exception is the Arctic Ocean, where riverine and coastal erosion is likely the dominant source. Ocean water Hg concentrations in the North Atlantic appear to have declined during the last several decades but have increased since the mid-1980s in the Pacific due to enhanced atmospheric deposition from the Asian continent. Finally, we provide examples of ongoing and anticipated changes in Hg cycling due to emission, climate, and land use changes. It is anticipated that future emissions changes will be strongly dependent on ASGM, as well as energy use scenarios and technology requirements implemented under the Minamata Convention. We predict that land use and climate change impacts on Hg cycling will be large and inherently linked to changes in ecosystem function and global atmospheric and ocean circulations. Our ability to predict multiple and simultaneous changes in future Hg global cycling and human exposure is rapidly developing but requires further enhancement.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review

TL;DR: Factors affecting Hg release from soil to the atmosphere are reviewed, including how rainfall events drive gaseous elemental mercury flux from soils of low Hg content, and how ambient conditions such as atmospheric O3 concentration play a significant role.
Journal ArticleDOI

Modulators of mercury risk to wildlife and humans in the context of rapid global change

TL;DR: This paper examines the role that key extrinsic and intrinsic drivers play on several aspects of Hg risk to humans and organisms in the environment, and addresses how the adverse health effects of HG in humans and wildlife are modulated by a range of extrinso- intrinsic drivers within the context of rapid global change.
Journal ArticleDOI

Updated Global and Oceanic Mercury Budgets for the United Nations Global Mercury Assessment 2018

TL;DR: The revised global budget estimates human activities including recycled legacy emissions have increased current atmospheric Hg concentrations by about 450% above natural levels (prevailing before 1450 AD), and current anthropogenic emissions to air are 2.5 kt/y.
Journal ArticleDOI

Challenges and opportunities for managing aquatic mercury pollution in altered landscapes.

TL;DR: The objective of this paper is to synthesize the scientific understanding of how Hg cycling in the aquatic environment is influenced by landscape perturbations at the local scale, perturbation that include watershed loadings, deforestation, reservoir and wetland creation, rice production, urbanization, mining and industrial point source pollution, and remediation.
Journal ArticleDOI

Mercury pollution in modern times and its socio-medical consequences.

TL;DR: Present knowledge and translation into preventive actions is still incomplete on the health effects of mercury, and risks for long term health effects trough prolonged low dose exposure and trough cumulative exposures of various mercury forms should be further addressed.
References
More filters
Journal ArticleDOI

Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity

TL;DR: It is shown that large wildfire activity increased suddenly and markedly in the mid-1980s, with higher large-wildfire frequency, longer wildfire durations, and longer wildfire seasons.
Journal ArticleDOI

Ecological effects, transport, and fate of mercury: a general review.

Dean W. Boening
- 01 Jun 2000 - 
TL;DR: The organic forms of mercury are generally more toxic to aquatic organisms and birds than the inorganic forms, and the form of retained mercury in birds is more variable and depends on species, target organ and geographical site.
Journal ArticleDOI

Mercury in the Aquatic Environment: A Review of Factors Affecting Methylation

TL;DR: The current state of knowledge on the physicochemical behavior of mercury in the aquatic environment, and in particular the environmental factors influencing its transformation into highly toxic methylated forms is examined in this paper.
Related Papers (5)