scispace - formally typeset
Open AccessPosted Content

Machine Learning on Graphs: A Model and Comprehensive Taxonomy

Reads0
Chats0
TLDR
A comprehensive taxonomy of representation learning methods for graph-structured data is proposed, aiming to unify several disparate bodies of work and provide a solid foundation for understanding the intuition behind these methods, and enables future research in the area.
Abstract
There has been a surge of recent interest in learning representations for graph-structured data. Graph representation learning methods have generally fallen into three main categories, based on the availability of labeled data. The first, network embedding (such as shallow graph embedding or graph auto-encoders), focuses on learning unsupervised representations of relational structure. The second, graph regularized neural networks, leverages graphs to augment neural network losses with a regularization objective for semi-supervised learning. The third, graph neural networks, aims to learn differentiable functions over discrete topologies with arbitrary structure. However, despite the popularity of these areas there has been surprisingly little work on unifying the three paradigms. Here, we aim to bridge the gap between graph neural networks, network embedding and graph regularization models. We propose a comprehensive taxonomy of representation learning methods for graph-structured data, aiming to unify several disparate bodies of work. Specifically, we propose a Graph Encoder Decoder Model (GRAPHEDM), which generalizes popular algorithms for semi-supervised learning on graphs (e.g. GraphSage, Graph Convolutional Networks, Graph Attention Networks), and unsupervised learning of graph representations (e.g. DeepWalk, node2vec, etc) into a single consistent approach. To illustrate the generality of this approach, we fit over thirty existing methods into this framework. We believe that this unifying view both provides a solid foundation for understanding the intuition behind these methods, and enables future research in the area.

read more

Citations
More filters
Posted Content

Graph Neural Networks: A Review of Methods and Applications

TL;DR: A detailed review over existing graph neural network models is provided, systematically categorize the applications, and four open problems for future research are proposed.
Journal ArticleDOI

Graph Neural Networks: A Review of Methods and Applications

TL;DR: In this paper, the authors propose a general design pipeline for GNN models and discuss the variants of each component, systematically categorize the applications, and propose four open problems for future research.
Posted Content

Benchmarking Graph Neural Networks

TL;DR: A reproducible GNN benchmarking framework is introduced, with the facility for researchers to add new models conveniently for arbitrary datasets, and a principled investigation into the recent Weisfeiler-Lehman GNNs (WL-GNNs) compared to message passing-based graph convolutional networks (GCNs).
Journal Article

Benchmarking Graph Neural Networks

TL;DR: A reproducible GNN benchmarking framework is introduced, with the facility for researchers to add new models conveniently for arbitrary datasets, and a principled investigation into the recent Weisfeiler-Lehman GNNs (WL-GNNs) compared to message passing-based graph convolutional networks (GCNs).
Posted Content

TUDataset: A collection of benchmark datasets for learning with graphs.

TL;DR: The TUDataset for graph classification and regression is introduced, which consists of over 120 datasets of varying sizes from a wide range of applications and provides Python-based data loaders, kernel and graph neural network baseline implementations, and evaluation tools.
References
More filters
Posted Content

Learning Combinatorial Optimization Algorithms over Graphs

TL;DR: In this paper, a combination of reinforcement learning and graph embedding is proposed to learn heuristics for combinatorial optimization problems over graphs, such as Minimum Vertex Cover, Maximum Cut and Traveling Salesman problems.
Posted Content

Deep Graph Library: Towards Efficient and Scalable Deep Learning on Graphs

TL;DR: Deep Graph Library (DGL) enables arbitrary message handling and mutation operators, flexible propagation rules, and is framework agnostic so as to leverage high-performance tensor, autograd operations, and other feature extraction modules already available in existing frameworks.
Posted Content

Poincar\'e Embeddings for Learning Hierarchical Representations

TL;DR: For example, the authors embeds symbolic data into an n-dimensional Poincare ball to learn parsimonious representations of symbolic data by simultaneously capturing hierarchy and similarity, and then uses Riemannian optimization to learn the embeddings.
Proceedings ArticleDOI

Geographic Routing Using Hyperbolic Space

TL;DR: A scalable and reliable point-to-point routing algorithm for ad hoc wireless networks and sensor-nets, and it is proved that the greedy routing strategy makes a consistent choice of the node responsible for the address, irrespective of the source address of the request.
Journal ArticleDOI

Stochastic Gradient Descent on Riemannian Manifolds

TL;DR: In this article, the authors developed a procedure extending stochastic gradient descent to the case where the function is defined on a Riemannian manifold and proved that the gradient descent algorithm converges to a critical point of the cost function.
Related Papers (5)