scispace - formally typeset
Open AccessPosted Content

Machine Learning on Graphs: A Model and Comprehensive Taxonomy

Reads0
Chats0
TLDR
A comprehensive taxonomy of representation learning methods for graph-structured data is proposed, aiming to unify several disparate bodies of work and provide a solid foundation for understanding the intuition behind these methods, and enables future research in the area.
Abstract
There has been a surge of recent interest in learning representations for graph-structured data. Graph representation learning methods have generally fallen into three main categories, based on the availability of labeled data. The first, network embedding (such as shallow graph embedding or graph auto-encoders), focuses on learning unsupervised representations of relational structure. The second, graph regularized neural networks, leverages graphs to augment neural network losses with a regularization objective for semi-supervised learning. The third, graph neural networks, aims to learn differentiable functions over discrete topologies with arbitrary structure. However, despite the popularity of these areas there has been surprisingly little work on unifying the three paradigms. Here, we aim to bridge the gap between graph neural networks, network embedding and graph regularization models. We propose a comprehensive taxonomy of representation learning methods for graph-structured data, aiming to unify several disparate bodies of work. Specifically, we propose a Graph Encoder Decoder Model (GRAPHEDM), which generalizes popular algorithms for semi-supervised learning on graphs (e.g. GraphSage, Graph Convolutional Networks, Graph Attention Networks), and unsupervised learning of graph representations (e.g. DeepWalk, node2vec, etc) into a single consistent approach. To illustrate the generality of this approach, we fit over thirty existing methods into this framework. We believe that this unifying view both provides a solid foundation for understanding the intuition behind these methods, and enables future research in the area.

read more

Citations
More filters
Posted Content

Graph Neural Networks: A Review of Methods and Applications

TL;DR: A detailed review over existing graph neural network models is provided, systematically categorize the applications, and four open problems for future research are proposed.
Journal ArticleDOI

Graph Neural Networks: A Review of Methods and Applications

TL;DR: In this paper, the authors propose a general design pipeline for GNN models and discuss the variants of each component, systematically categorize the applications, and propose four open problems for future research.
Posted Content

Benchmarking Graph Neural Networks

TL;DR: A reproducible GNN benchmarking framework is introduced, with the facility for researchers to add new models conveniently for arbitrary datasets, and a principled investigation into the recent Weisfeiler-Lehman GNNs (WL-GNNs) compared to message passing-based graph convolutional networks (GCNs).
Journal Article

Benchmarking Graph Neural Networks

TL;DR: A reproducible GNN benchmarking framework is introduced, with the facility for researchers to add new models conveniently for arbitrary datasets, and a principled investigation into the recent Weisfeiler-Lehman GNNs (WL-GNNs) compared to message passing-based graph convolutional networks (GCNs).
Posted Content

TUDataset: A collection of benchmark datasets for learning with graphs.

TL;DR: The TUDataset for graph classification and regression is introduced, which consists of over 120 datasets of varying sizes from a wide range of applications and provides Python-based data loaders, kernel and graph neural network baseline implementations, and evaluation tools.
References
More filters
Journal ArticleDOI

Hyperbolic geometry of complex networks

TL;DR: It is shown that targeted transport processes without global topology knowledge are maximally efficient, according to all efficiency measures, in networks with strongest heterogeneity and clustering, and that this efficiency is remarkably robust with respect to even catastrophic disturbances and damages to the network structure.
Posted Content

Modeling Relational Data with Graph Convolutional Networks

TL;DR: Relational Graph Convolutional Networks (R-GCNets) as discussed by the authors are related to a recent class of neural networks operating on graphs, and are developed specifically to deal with the highly multi-relational data characteristic of realistic knowledge bases.
Proceedings Article

Deep neural networks for learning graph representations

TL;DR: A novel model for learning graph representations, which generates a low-dimensional vector representation for each vertex by capturing the graph structural information directly, and which outperforms other stat-of-the-art models in such tasks.
Posted Content

Graph Convolutional Matrix Completion

TL;DR: A graph auto-encoder framework based on differentiable message passing on the bipartite interaction graph that shows competitive performance on standard collaborative filtering benchmarks and outperforms recent state-of-the-art methods.
Journal ArticleDOI

A Survey on Bias and Fairness in Machine Learning

TL;DR: In this article, the authors present a taxonomy for fairness definitions that machine learning researchers have defined to avoid the existing bias in AI systems and examine different domains and subdomains in AI showing what researchers have observed with regard to unfair outcomes in the state-of-the-art methods and ways they have tried to address them.
Related Papers (5)