scispace - formally typeset
Open AccessJournal ArticleDOI

Macroecological patterns in soil communities

Thibaud Decaëns
- 01 May 2010 - 
- Vol. 19, Iss: 3, pp 287-302
TLDR
It appears that microorganisms do not respond to large-scale environmental gradients in the same way as metazoans, and soil communities appear weakly structured by competition, although competitive constraints may account for assembly rules within specific taxa.
Abstract
Aim To review published evidence regarding the factors that influence the geographic variation in diversity of soil organisms at different spatial scales. Location  Global. Methods  A search of the relevant literature was conducted using the Web of Science and the author's personal scientific database as the major sources. Special attention was paid to include seminal studies, highly cited papers and/or studies highlighting novel results. Results  Despite their significant contribution to global biodiversity, our taxonomic knowledge of soil biota is still poor compared with that of most above-ground organisms. This is particularly evident for small-bodied taxa. Global patterns of soil biodiversity distribution have been poorly documented and are thought to differ significantly from what is reported above-ground. Based on existing data, it appears that microorganisms do not respond to large-scale environmental gradients in the same way as metazoans. Whereas soil microflora seem to be mainly represented by cosmopolitan species, soil animals respond to altitudinal, latitudinal or area gradients in the same way as described for above-ground organisms. At local scales, there is less evidence that local factors regulate above- and below-ground communities in the same way. Except for a few taxa, the humpbacked response to stress and disturbance gradients doesn't seem to apply underground. Soil communities thus appear weakly structured by competition, although competitive constraints may account for assembly rules within specific taxa. The main factor constraining local soil biodiversity is the compact and heterogeneous nature of soils, which provides unrivalled potential for niche partitioning, thus allowing high levels of local biodiversity. This heterogeneity is increased by the impact of ecosystem engineers that generate resource patchiness at a range of spatio-temporal scales.

read more

Citations
More filters
Journal ArticleDOI

The Theory of Island Biogeography

TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Journal ArticleDOI

Belowground biodiversity and ecosystem functioning

TL;DR: Recent progress in understanding belowground biodiversity and its role in determining the ecological and evolutionary responses of terrestrial ecosystems to current and future environmental change are reviewed.
Journal ArticleDOI

The global soil community and its influence on biogeochemistry

TL;DR: The state of science relating soil organisms to biogeochemical processes is reviewed, focusing particularly on the importance of microbial community variation on decomposition and turnover of soil organic matter.
Journal ArticleDOI

Community and ecosystem responses to elevational gradients: processes, mechanisms and insights for global change

TL;DR: In this article, the authors use elevation information to understand community and ecosystem responses to global climate change at much larger spatial and temporal scales than is possible through conventional ecological experiments. But, their work is limited by the complexity of predicting when and why the same variable responds differently among disparate elevational gradients.
Journal ArticleDOI

Latitudinal gradients as natural laboratories to infer species' responses to temperature

TL;DR: The synthesis indicates that many life-history traits of plants vary with latitude but the translation of latitudinal clines into responses to temperature is a crucial step, and integrated approaches of observational studies along temperature gradients, experimental methods and common garden experiments increasingly emerge as the way forward to further the authors' understanding of species and community responses to climate warming.
References
More filters
Journal ArticleDOI

The Theory of Island Biogeography

TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Book

The Theory of Island Biogeography

TL;DR: The Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201
Book

Resource competition and community structure

David Tilman
TL;DR: This book builds a mechanistic, resource-based explanation of the structure and functioning of ecological communities and explores such problems as the evolution of "super species," the differences between plant and animal community diversity patterns, and the cause of plant succession.
Book ChapterDOI

Organisms as ecosystem engineers

TL;DR: The role that many organisms play in the creation, modification and maintenance of habitats does not involve direct trophic interactions between species, but they are nevertheless important and common.
Book

Species Diversity in Space and Time

TL;DR: In this article, the authors present a hierarchical dynamic puzzle to understand the relationship between habitat diversity and species diversity and the evolution of the relationships between habitats diversity and diversity in evolutionary time.
Related Papers (5)