scispace - formally typeset
Journal ArticleDOI

Mechanisms and consequences of Jak–STAT signaling in the immune system

Reads0
Chats0
TLDR
Recent advances in Jak–STAT biology are reviewed, focusing on immune cell function, disease etiology and therapeutic intervention, as well as broader principles of gene regulation and signal-dependent TFs.
Abstract
Kinases of the Jak ('Janus kinase') family and transcription factors (TFs) of the STAT ('signal transducer and activator of transcription') family constitute a rapid membrane-to-nucleus signaling module that affects every aspect of the mammalian immune system. Research on this paradigmatic pathway has experienced breakneck growth in the quarter century since its discovery and has yielded a stream of basic and clinical insights that have profoundly influenced modern understanding of human health and disease, exemplified by the bench-to-bedside success of Jak inhibitors ('jakinibs') and pathway-targeting drugs. Here we review recent advances in Jak-STAT biology, focusing on immune cell function, disease etiology and therapeutic intervention, as well as broader principles of gene regulation and signal-dependent TFs.

read more

Citations
More filters
Journal ArticleDOI

Janus Kinase 3 phosphorylation and the JAK/STAT pathway are positively modulated by follicle-stimulating hormone (FSH) in bovine granulosa cells

TL;DR: In this article , the authors used JANEX-1, a JAK3 inhibitor, and FSH treatments and analyzed proliferation markers, steroidogenic enzymes and phosphorylation of target proteins including STAT3, CDKN1B/p27Kip1 and MAPK8IP3/JIP3.
Posted ContentDOI

Dendritic cell-specific SMAD3, downstream of JAK2, contributes to inflammation and salt-sensitivity of blood pressure

TL;DR: In this article , the expression of the genes of the JAK2 pathway mirrored changes in blood pressure after saltloading and depletion in salt-sensitive but not saltresistant humans, leading to increased production of highly reactive isolevuglandins and pro-inflammatory cytokine IL-6 in renal APCs.
Journal ArticleDOI

Molecular Characterization and Expression Analysis of Four Janus Kinases (JAK1, JAK2a, JAK3 and TYK2) from Golden Pompano (Trachinotus ovatus)

TL;DR: In this paper , the authors obtained the full-length cDNA sequences of JAKs from golden pompano and investigated their roles following stimulation with lipopolysaccharide (LPS), polyriboinosinic-polyribocytidylic acid (poly I:C) and Vibrio alginolyticus using RT-PCR, RACE-pcR and real-time qPCR methods.
Posted ContentDOI

Shock drives a highly coordinated transcriptional and DNA methylation response in the endothelium

TL;DR: In this article , a cross-omics analysis was performed on kidney endothelium from acute endotoxin-challenged mice lacking or not the JAK/STAT3 inhibitor SOCS3.
References
More filters
Journal ArticleDOI

Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases.

TL;DR: The authors showed that CD4+CD25+ cells contribute to maintaining self-tolerance by downregulating immune response to self and non-self Ags in an Ag-nonspecific manner, presumably at the T cell activation stage.
Journal ArticleDOI

Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins

TL;DR: A previously unrecognized direct signal transduction pathway to the nucleus has been uncovered: IFN-receptor interaction at the cell surface leads to the activation of kinases of the Jak family that phosphorylate substrate proteins called STATs (signal transducers and activators of transcription).
Journal ArticleDOI

A Gain-of-Function Mutation of JAK2 in Myeloproliferative Disorders

TL;DR: Genetic evidence and in vitro functional studies indicate that V617F gives hematopoietic precursors proliferative and survival advantages and a high proportion of patients with myeloproliferative disorders carry a dominant gain-of-function mutation of JAK2.
Journal ArticleDOI

Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders.

TL;DR: A single acquired mutation of JAK2 was noted in more than half of patients with a myeloproliferative disorder and its presence in all erythropoietin-independent erythroid colonies demonstrates a link with growth factor hypersensitivity, a key biological feature of these disorders.
Journal ArticleDOI

A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera

TL;DR: A clonal and recurrent mutation in the JH2 pseudo-kinase domain of the Janus kinase 2 (JAK2) gene in most (> 80%) polycythaemia vera patients leads to constitutive tyrosine phosphorylation activity that promotes cytokine hypersensitivity and induces erythrocytosis in a mouse model.
Related Papers (5)