scispace - formally typeset
Open AccessJournal ArticleDOI

Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent.

Reads0
Chats0
TLDR
It was shown that mevinolin was an orally active cholesterol-lowering agent in the dog and orally administered sodium mevinolinate was an active inhibitor of cholesterol synthesis in an acute assay.
Abstract
Mevinolin, a fungal metabolite, was isolated from cultures of Aspergillus terreus. The structure and absolute configuration of mevinolini and its open acid form, mevinolinic acid, were determined by a combination of physical techniques. Mevinolin was shown to be 1,2,6,7,8,8a-hexahydro-beta, delta-dihydroxy-2,6-dimethyl-8-(2-methyl-1-oxobutoxy)-1-naphthalene-hepatanoic acid delta-lactone. Mevinolin in the hydroxy-acid form, mevinolinic acid, is a potent competitive inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase [mevalonate: NADP+ oxidoreductase (CoA-acylating), EC 1.1.1.34]; its Ki of 0.6 nM can be compared to 1.4 nM for the hydroxy acid form of the previously described related inhibitor, ML-236B (compactin, 6-demethylmevinolin). In the rat, orally administered sodium mevinolinate was an active inhibitor of cholesterol synthesis in an acute assay (50% inhibitory dose = 46 microgram/kg). Furthermore, it was shown that mevinolin was an orally active cholesterol-lowering agent in the dog. Treatment of dogs for 3 weeks with mevinolin at 8 mg/kg per day resulted in a 29.3 +/- 2.5% lowering of plasma cholesterol.

read more

Citations
More filters
Journal ArticleDOI

3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors in the treatment of hypercholesterolemia

Hoeg Jm, +1 more
- 25 Dec 1987 - 
TL;DR: If the short-term safety of these drugs extends to ongoing long-term studies and if cardiovascular morbidity and mortality are affected by their use, this class of hypolipidemic agent will markedly facilitate the effective treatment of hypercholesterolemia.
Journal ArticleDOI

Targeting the mevalonate cascade as a new therapeutic approach in heart disease, cancer and pulmonary disease.

TL;DR: This review will focus on the therapeutic applications and mechanisms involved in the MVA cascade including Rho GTPase and Rho kinase (ROCK) signaling, statin inhibition of HMGCR, geranylgeranyltransferase (GGTase) inhibition, and farnesyl transferase (FTase) inhibited in cardiovascular disease, pulmonary diseases, and cancer.
Journal ArticleDOI

Lowering plasma cholesterol by raising LDL receptors.

TL;DR: More than 93 percent of the body's cholesterol is located in cells, where it performs vital structural and metabolic functions; only about 7 per cent circulates in plasma where it predisposes to...
Journal ArticleDOI

Antiviral Activity of Lovastatin against Respiratory Syncytial Virus In Vivo and In Vitro

TL;DR: Treatment of mice with lovastatin, a drug that inhibits prenylation pathways in the cell by directly inhibiting hydroxymethylglutaryl coenzyme A reductase, diminishes RSV but not vaccinia virus replication when administered up to 24 h after RSV infection and decreases virus-induced weight loss and illness in mice.
Journal ArticleDOI

Cholesterol-Lowering Activity of Naringenin via Inhibition of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase and Acyl Coenzyme A:Cholesterol Acyltransferase in Rats

TL;DR: Results show that naringenin lowers the plasma and hepatic cholesterol concentrations by suppressing HMG-CoA reductase and ACAT in rats fed a high-cholesterol diet.
References
More filters
Journal ArticleDOI

A simplified method for the estimation of total cholesterol in serum and demonstration of its specificity.

TL;DR: The simplified but precise method described in this paper involves treatment of the serum with alcoholic potassium hydroxide to liberate the cholesterol from the lipoprotein complexes and to saponify the cholesterol esters.
Journal ArticleDOI

Serum Cholesterol, Lipoproteins, and the Risk of Coronary Heart Disease: The Framingham Study

TL;DR: Risk of coronary heart disease over 14 years was examined prospectively in 2,282 men and 2,845 women according to their antecedent cholesterol and lipoprotein status.
Journal ArticleDOI

Competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme a reductase by ML-236A and ML-236B fungal metabolites, having hypocholesterolemic activity

TL;DR: The experiments reported in this paper demonstrate that MG236A and ML-236B inhibit specifically 3-hydroxy-3-methylglutaryl (HMG)CoA reductase (EC 1 .I .1.34), the rate-limiting enzyme in cholesterol synthetic pathway, without affecting the rest of the enzymes involved in this pathway, and that the inhibition is competitive with respect to the substrate HMG-CoA.
Related Papers (5)