scispace - formally typeset
Journal ArticleDOI

Microbial degradation of low density polyethylene (LDPE): A review

Reads0
Chats0
TLDR
The different stages of biodegradation are described and several techniques used by some authors working in this domain are state, including use of various techniques for the analysis of degradation in vitro.
Abstract
Biodegradation is considered to take place throughout three stages: biodeterioration, biofragmentation and assimilation, without neglect the participation of abiotic factors. However, most of the techniques used by researchers in this area are inadequate to provide evidence of the final stage: assimilation. In this review, we describe the different stages of biodegradation and we state several techniques used by some authors working in this domain. Validate assimilation (including mineralization) is an important aspect to guarantee the real biodegradability of items of consumption (in particular friendly environmental new materials). Since LDPE is considered to be practically inert, efforts were made to isolate unique microorganisms capable of utilizing LDPEs. Recent data showed that biodegradation of LDPE waste with selected microbial strains became a viable solution. Among biological agents, microbial enzymes are one of the most powerful tools for the biodegradation of LDPEs. Activity of biodegradation of most enzymes is higher in fungi than in bacteria. It is important to consider fungal degradation of LDPE in order to understand what is necessary for biodegradation and the mechanisms involved. This requires understanding of the interactions between materials and microorganisms and the biochemical changes involved. Widespread studies on the biodegradation of LDPEs have been carried out in order to overcome the environmental problems associated with LDPE waste. This paper reviews the current research on the biodegradation of LDPEs and also use of various techniques for the analysis of degradation in vitro.

read more

Citations
More filters
Journal ArticleDOI

Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we?

TL;DR: This review is focused on microbial biocatalysts involved in the degradation of the synthetic plastics polyethylene, polystyrene, polyurethane andpolyethylene terephthalate (PET).
Journal ArticleDOI

Review on the current status of polymer degradation: a microbial approach

TL;DR: The occurrence and distribution of microbes that are involved in the degradation of both natural and synthetic polymers are described and it seems that biological agents and their metabolic enzymes can be exploited as a potent tool for polymer degradation.
Journal ArticleDOI

Plastics: Environmental and Biotechnological Perspectives on Microbial Degradation.

TL;DR: A review of current knowledge on microbial plastic degradation can be found in this paper, where the authors summarized the state-of-the-art enzymes and microorganisms acting on high-molecular-weight polymers of polyethylene terephthalate (PET) and ester-based polyurethane.
Journal ArticleDOI

Microbial degradation and other environmental aspects of microplastics/plastics.

TL;DR: This review provides the first systematic summary of the microbial-mediated degradation of MPs and provides a reference for future studies investigating effective means of MP pollution control.
Journal ArticleDOI

Microbial and Enzymatic Degradation of Synthetic Plastics

TL;DR: The objective of this review is to outline the advances made in the microbial degradation of synthetic plastics and, overview the enzymes involved in biodegradation.
References
More filters
Journal ArticleDOI

Biofilms: microbial life on surfaces.

TL;DR: A greater understanding of biofilm processes should lead to novel, effective control strategies for biofilm control and a resulting improvement in patient management.
Journal ArticleDOI

Lost at sea: where is all the plastic?

TL;DR: It is shown that microscopic plastic fragments and fibers are also widespread in the marine environment and may persist for centuries.
Journal ArticleDOI

Accumulation and fragmentation of plastic debris in global environments.

TL;DR: Global plastics production and the accumulation of plastic waste are documented, showing that trends in mega- and macro-plastic accumulation rates are no longer uniformly increasing and that the average size of plastic particles in the environment seems to be decreasing.
Journal ArticleDOI

Impact of Culture-Independent Studies on the Emerging Phylogenetic View of Bacterial Diversity

TL;DR: The authors' perspective on microbial diversity has improved enormously over the past few decades in large part due to molecular phylogenetic studies that objectively relate organisms.
Related Papers (5)