scispace - formally typeset
Journal ArticleDOI

Microplastic Size-Dependent Toxicity, Oxidative Stress Induction, and p-JNK and p-p38 Activation in the Monogonont Rotifer (Brachionus koreanus)

TLDR
In vitro tests revealed that antioxidant-related enzymes and MAPK signaling pathways were significantly activated in response to microplastic exposure in a size-dependent manner, suggesting that 6-μm microbeads are more effectively egested from B. koreanus than 0.05- or 0.5- μm microBeads.
Abstract
In this study, we evaluated accumulation and adverse effects of ingestion of microplastics in the monogonont rotifer (Brachionus koreanus). The dependence of microplastic toxicity on particle size was investigated by measuring several in vivo end points and studying the ingestion and egestion using 0.05-, 0.5-, and 6-μm nonfunctionalized polystyrene microbeads. To identify the defense mechanisms activated in response to microplastic exposure, the activities of several antioxidant-related enzymes and the phosphorylation status of mitogen-activated protein kinases (MAPKs) were determined. Exposure to polystyrene microbeads of all sizes led to significant size-dependent effects, including reduced growth rate, reduced fecundity, decreased lifespan and longer reproduction time. Rotifers exposed to 6-μm fluorescently labeled microbeads exhibited almost no fluorescence after 24 h, while rotifers exposed to 0.05- and 0.5-μm fluorescently labeled microbeads displayed fluorescence until 48 h, suggesting that 6-μm microbeads are more effectively egested from B. koreanus than 0.05- or 0.5-μm microbeads. This observation provides a potential explanation for our findings that microbead toxicity was size-dependent and smaller microbeads were more toxic. In vitro tests revealed that antioxidant-related enzymes and MAPK signaling pathways were significantly activated in response to microplastic exposure in a size-dependent manner.

read more

Citations
More filters
Journal ArticleDOI

Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities.

TL;DR: This review critically evaluates the current literature on the presence, behaviour and fate of microplastics in freshwater and terrestrial environments and, where appropriate, draws on relevant studies from other fields including nanotechnology, agriculture and waste management.
Journal ArticleDOI

Microplastics as an emerging threat to terrestrial ecosystems

TL;DR: The pervasive microplastic contamination as a potential agent of global change in terrestrial systems is introduced, the physical and chemical nature of the respective observed effects are highlighted, and the broad toxicity of nanoplastics derived from plastic breakdown is discussed.
Journal ArticleDOI

Interactions of microplastic debris throughout the marine ecosystem

TL;DR: The concept of microplastic as a complex, dynamic mixture of polymers and additives, to which organic material and contaminants can successively bind to form an ‘ecocorona’, increasing the density and surface charge of particles and changing their bioavailability and toxicity is developed.
Journal ArticleDOI

Microplastics in wastewater treatment plants: Detection, occurrence and removal

TL;DR: In this review, the up-to-date status on the detection, occurrence and removal of microplastics in WWTPs are comprehensively reviewed and the development of potential microplastic-targeted treatment technologies is presented.
Journal ArticleDOI

Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans.

TL;DR: Analysis of zebrafish Danio rerio and nematode Caenorhabditis elegans used as model organisms for microplastic exposure in freshwater pelagic and benthic environments suggests intestinal damage is a key effect of microplastics; and that the toxicity ofmicroplastics is closely dependent on their size, rather than their composition.
References
More filters
Book

Free radicals in biology and medicine

TL;DR: 1. Oxygen is a toxic gas - an introduction to oxygen toxicity and reactive species, and the chemistry of free radicals and related 'reactive species'
Journal ArticleDOI

Microplastics in the marine environment

TL;DR: The mechanisms of generation and potential impacts of microplastics in the ocean environment are discussed, and the increasing levels of plastic pollution of the oceans are understood, it is important to better understand the impact of microPlastic in the Ocean food web.
Journal ArticleDOI

Accumulation and fragmentation of plastic debris in global environments.

TL;DR: Global plastics production and the accumulation of plastic waste are documented, showing that trends in mega- and macro-plastic accumulation rates are no longer uniformly increasing and that the average size of plastic particles in the environment seems to be decreasing.
Journal ArticleDOI

Microplastics as contaminants in the marine environment: a review.

TL;DR: Ingestion of microplastics has been demonstrated in a range of marine organisms, a process which may facilitate the transfer of chemical additives or hydrophobic waterborne pollutants to biota.
Journal ArticleDOI

Microplastic Ingestion by Zooplankton

TL;DR: It is shown that microplastics are ingested by, and may impact upon, zooplankton, and imply that marine microplastic debris can negatively impact upon zoopLankton function and health.
Related Papers (5)