scispace - formally typeset
Journal ArticleDOI

Modulated Synthesis of Zr‐Based Metal–Organic Frameworks: From Nano to Single Crystals

TLDR
Water proved to be essential for the formation of well-ordered Zr-bdc-NH(2) and the first single-crystal structural analysis of a ZR-based metal-organic framework.
Abstract
We present an investigation on the influence of benzoic acid, acetic acid, and water on the syntheses of the Zr-based metal-organic frameworks Zr-bdc (UiO-66), Zr-bdc-NH(2) (UiO-66-NH(2)), Zr-bpdc (UiO-67), and Zr-tpdc-NH(2) (UiO-68-NH(2)) (H(2) bdc: terephthalic acid, H(2) bpdc: biphenyl-4,4'-dicarboxylic acid, H(2) tpdc: terphenyl-4,4''-dicarboxylic acid). By varying the amount of benzoic or acetic acid, the synthesis of Zr-bdc can be modulated. With increasing concentration of the modulator, the products change from intergrown to individual crystals, the size of which can be tuned. Addition of benzoic acid also affects the size and morphology of Zr-bpdc and, additionally, makes the synthesis of Zr-bpdc highly reproducible. The control of crystal and particle size is proven by powder XRD, SEM and dynamic light scattering (DLS) measurements. Thermogravimetric analysis (TGA) and Ar sorption experiments show that the materials from modulated syntheses can be activated and that they exhibit high specific surface areas. Water proved to be essential for the formation of well-ordered Zr-bdc-NH(2) . Zr-tpdc-NH(2), a material with a structure analogous to that of Zr-bdc and Zr-bpdc, but with the longer, functionalized linker 2'-amino-1,1':4',1''-terphenyl-4,4''-dicarboxylic acid, was obtained as single crystals. This allowed the first single-crystal structural analysis of a Zr-based metal-organic framework.

read more

Citations
More filters
Journal ArticleDOI

Stable Metal-Organic Frameworks: Design, Synthesis, and Applications.

TL;DR: This review is expected to guide the design of stable MOFs by providing insights into existing structures, which could lead to the discovery and development of more advanced functional materials.
Journal ArticleDOI

Zr-based metal-organic frameworks: design, synthesis, structure, and applications.

TL;DR: Advances in Zr-MOFs since 2008 are summarized and reviewed from three aspects: design and synthesis, structure, and applications to provide guidance for the in-depth investigation of MOFs towards practical applications.
Journal ArticleDOI

Tuning the structure and function of metal–organic frameworks via linker design

TL;DR: This critical review of metal-organic frameworks (MOFs) highlights advances in MOF synthesis focusing on linker design and examples of building MOFs to reach unique properties, such as unprecedented surface area, pore aperture, molecular recognition, stability, and catalysis, through linkers are described.
Journal ArticleDOI

Zirconium-Metalloporphyrin PCN-222: Mesoporous Metal–Organic Frameworks with Ultrahigh Stability as Biomimetic Catalysts†

TL;DR: A unique strategy employing heme-like active centers as structural motifs for the assembly of highly stable porous materials, which should possess well-defined mesochannels and ultrahigh stability in aqueous solution is proposed.
References
More filters
Journal ArticleDOI

Single-crystal structure validation with the program PLATON

TL;DR: The results of a single-crystal structure determination when in CIF format can now be validated routinely by automatic procedures, and the concepts of validation and the classes of checks carried out by the program PLATON as part of the IUCr checkCIF facility are described.
Journal ArticleDOI

A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability.

TL;DR: The Zr-MOFs presented in this work have the toughness needed for industrial applications; decomposition temperature above 500 degrees C and resistance to most chemicals, and they remain crystalline even after exposure to 10 tons/cm2 of external pressure.
Journal ArticleDOI

High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture.

TL;DR: Members of a selection of zeolitic imidazolate frameworks have high thermal stability and chemical stability in refluxing organic and aqueous media, and they exhibit unusual selectivity for CO2 capture from CO2/CO mixtures and extraordinary capacity for storing CO2.
Journal ArticleDOI

Zeolitic Imidazolate Framework Membrane with Molecular Sieving Properties by Microwave-Assisted Solvothermal Synthesis

TL;DR: A zeolitic imidazolate framework (ZIF-8) as member of the metal-organic framework family has been crystallized as a thin porous layer on an asymmetric ceramic support that can be selected from other gases by molecular sieving.
Journal ArticleDOI

Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2

TL;DR: The catalytic properties of the metal-organic framework compound Cu 3 (BTC) 2 (H 2 O) 3 ǫ x H 2 O (BTC=benzene 1,3,5-tricarboxylate) were explored in this article.
Related Papers (5)