scispace - formally typeset
Book ChapterDOI

Multi-resolution 3D approximations for rendering complex scenes

Jarek Rossignac, +1 more
- pp 455-465
TLDR
This work presents a simple, effective, and efficient technique for approximating arbitrary polyhedra based on triangulation and vertex-clustering, and produces a series of 3D approximations that resemble the original object from all viewpoints, but contain an increasingly smaller number of faces and vertices.
Abstract
We present a simple, effective, and efficient technique for approximating arbitrary polyhedra. It is based on triangulation and vertex-clustering, and produces a series of 3D approximations (also called “levels of detail”) that resemble the original object from all viewpoints, but contain an increasingly smaller number of faces and vertices. The simplification is more efficient than competing techniques because it does not require building and maintaining a topological adjacency graph. Furthermore, it is better suited for mechanical CAD models which often exhibit patterns of small features, because it automatically groups and simplifies features that are geometrically close, but need not be topologically close or even part of a single connected component Using a lower level of detail when displaying small, distant, or background objects improves graphic performance without a significant loss of perceptual information, and thus enables realtime inspection of complex scenes or a convenient environment for animation or walkthrough preview.

read more

Citations
More filters
Journal ArticleDOI

Smooth Transitions in Texture-based Simplification

TL;DR: Algorithms are developed for providing smooth transitions when simplifying large, static geometric models with texture-based representations (or impostors) by providing continuous imagery across borders between geometry and sampled textures at all times.

Appearance-preserving simplification of polygonal models

TL;DR: This dissertation focuses on the use of error metrics to provide guaranteed error bounds for the simplifications of polygonal models, and develops the first appearance-preserving simplification algorithm.
Journal ArticleDOI

Bounding proxies for shape approximation

TL;DR: A new bounding shape approximation algorithm which takes as input an arbitrary surface mesh, with potentially complex multi-component structures, and generates automatically a bounding proxy which is tightened on the input and can match even the coarsest levels of approximation.

A User Study Evaluating Level of Detail Degradation in the Periphery of Head-Mounted Displays

TL;DR: A user study was performed to evaluate the effectiveness of high detail insets used with head-mounted displays, and showed that insetless, high detail displays did not lead to significantly different search times or accuracies than displays with insets.
Journal ArticleDOI

Enhanced battlefield visualization for situation awareness

TL;DR: This work presents tools to visualize density, clustering, and lethality assessment that help a military commander achieve situation awareness on the battlefield and explains how to deliver visual information to the human visual system effectively.
References
More filters
Proceedings ArticleDOI

Surface reconstruction from unorganized points

TL;DR: A general method for automatic reconstruction of accurate, concise, piecewise smooth surfaces from unorganized 3D points that is able to automatically infer the topological type of the surface, its geometry, and the presence and location of features such as boundaries, creases, and corners.
Proceedings ArticleDOI

Decimation of triangle meshes

TL;DR: An application independent algorithm that uses local operations on geometry and topology to reduce the number of triangles in a triangle mesh and results from two different geometric modeling applications illustrate the strengths of the algorithm.
Proceedings ArticleDOI

Pyramidal parametrics

TL;DR: This paper advances a “pyramidal parametric” prefiltering and sampling geometry which minimizes aliasing effects and assures continuity within and between target images.
Proceedings ArticleDOI

Re-tiling polygonal surfaces

TL;DR: This paper shows how a new set of vertices can be distributed over the surface of a model and connected to one another to create a re-tiling of a surface that is faithful to both the geometry and the topology of the original surface.
Journal ArticleDOI

Hierarchical geometric models for visible surface algorithms

TL;DR: The geometric structure suggests a recursive descent, visible surface algorithm in which the computation time potentially grows linearly with the visible complexity of the scene, and the range of complexity of an environment is greatly increased.