scispace - formally typeset
Open Access

Nanostructured Transition Metal Oxides for Aqueous Hybrid Electrochemical Supercapacitors

Reads0
Chats0
TLDR
In this paper, the authors present an overview of the research carried out in our laboratories with low-cost transition metal oxides (manganese dioxide, iron oxide and vanadium oxide) as active electrode materials for aqueous electrochemical supercapacitors.
Abstract
In this paper, we wish to present an overview of the research carried out in our laboratories with low-cost transition metal oxides (manganese dioxide, iron oxide and vanadium oxide) as active electrode materials for aqueous electrochemical supercapacitors. More specifically, the paper focuses on the approaches that have been used to increase the capacitance of the metal oxides and the cell voltage of the supercapacitor. It is shown that the cell voltage of an electrochemical supercapacitor can be increased significantly with the use of hybrid systems. The most relevant associations are Fe3O4 or activated carbon as the negative electrode and MnO2 as the positive. The cell voltage of the Fe3O4/MnO2 device is 1.8 V and this value was increased to 2.2 V by using activated carbon instead of Fe3O4. These two systems have shown superior behavior compared to a symmetric MnO2/MnO2 device which only works within a 1 V potential window in aqueous K2SO4. Furthermore, the activated carbon/MnO2 hybrid device exhibits a real power density of 605 W/kg (maximum power density =19.0 kW/kg) with an energy density of 17.3 Wh/kg. These values compete well with those of standard electrochemical double layer capacitors working in organic electrolytes.

read more

Citations
More filters
Journal ArticleDOI

Materials for electrochemical capacitors

TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Journal ArticleDOI

High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors.

TL;DR: A high-voltage asymmetric electrochemical capacitor based on graphene as negative electrode and a MnO(2) nanowire/graphene composite (MGC) as positive electrode in a neutral aqueous Na( 2)SO(4) solution as electrolyte opens up the possibility of graphene-based composites for applications in safe aqueously electrolyte-based high- voltage asymmetric ECs with high energy and power densities.
Journal ArticleDOI

Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes.

TL;DR: This research might provide a method for flexible, lightweight, high-performance, low-cost, and environmentally friendly materials used in energy conversion and storage systems for the effective use of renewable energy.
Journal ArticleDOI

Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors.

TL;DR: It is demonstrated that solution-exfoliated graphene nanosheets (∼5 nm thickness) can be conformably coated from solution on three-dimensional, porous textiles support structures for high loading of active electrode materials and to facilitate the access of electrolytes to those materials.
Journal ArticleDOI

An overview of the applications of graphene-based materials in supercapacitors.

TL;DR: Several key issues for improving the structure of graphene-based materials and for achieving better capacitor performance, along with the current outlook for the field are discussed.
References
More filters
Journal ArticleDOI

Materials for electrochemical capacitors

TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Book

Electrochemical Supercapacitors : Scientific Fundamentals and Technological Applications

TL;DR: In this paper, the double-layer and surface functionalities at Carbon were investigated and the double layer at Capacitor Electrode Interfaces: its structure and Capacitance.
Journal ArticleDOI

Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor

TL;DR: The charge storage mechanism in MnO2 electrode, used in aqueous electrolyte, was investigated by cyclic voltammetry and X-ray photoelectron spectroscopy as discussed by the authors.
Journal ArticleDOI

Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors

TL;DR: In this paper, the results obtained on the electrochemical behavior of electrochemical capacitors assembled in nonaqueous electrolyte are presented and the impedance of the supercapacitors is discussed in terms of complex capacitance and complex power.
Journal ArticleDOI

High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors.

TL;DR: A high-voltage asymmetric electrochemical capacitor based on graphene as negative electrode and a MnO(2) nanowire/graphene composite (MGC) as positive electrode in a neutral aqueous Na( 2)SO(4) solution as electrolyte opens up the possibility of graphene-based composites for applications in safe aqueously electrolyte-based high- voltage asymmetric ECs with high energy and power densities.
Related Papers (5)