scispace - formally typeset
Journal ArticleDOI

Naturally Arising CD4+ Regulatory T Cells for Immunologic Self-Tolerance and Negative Control of Immune Responses

Shimon Sakaguchi
- 19 Mar 2004 - 
- Vol. 22, Iss: 1, pp 531-562
Reads0
Chats0
TLDR
How naturally arising CD25+CD4+ regulatory T cells contribute to the maintenance of immunologic self-tolerance and negative control of various immune responses, and how they can be exploited to prevent and treat autoimmune disease, allergy, cancer, and chronic infection, or establish donor-specific transplantation tolerance are discussed.
Abstract
▪ Abstract Naturally occurring CD4+ regulatory T cells, the majority of which express CD25, are engaged in dominant control of self-reactive T cells, contributing to the maintenance of immunologic self-tolerance. Their depletion or functional alteration leads to the development of autoimmune disease in otherwise normal animals. The majority, if not all, of such CD25+CD4+ regulatory T cells are produced by the normal thymus as a functionally distinct and mature subpopulation of T cells. Their repertoire of antigen specificities is as broad as that of naive T cells, and they are capable of recognizing both self and nonself antigens, thus enabling them to control various immune responses. In addition to antigen recognition, signals through various accessory molecules and via cytokines control their activation, expansion, and survival, and tune their suppressive activity. Furthermore, the generation of CD25+CD4+ regulatory T cells in the immune system is at least in part developmentally and genetically contro...

read more

Citations
More filters
Journal ArticleDOI

Regulatory T Cells and Systemic Lupus Erythematosus

TL;DR: It is proposed that Treg function in SLE is the more important factor to address in future studies of murine lupus, and a model for Treg tolerance breakdown to nucleic acid‐binding SLE autoantigens is proposed.
Journal ArticleDOI

CD4+CD25+FoxP3+PD1− regulatory T cells in acute and stable relapsing-remitting multiple sclerosis and their modulation by therapy

TL;DR: The data herein suggest that PD1 — Treg cells play a pivotal role in MS and offer a biological explanation for disease relapse and for the mechanism associated with response to COPA and IFNβ.
Journal ArticleDOI

Adoptive T cell therapy: Addressing challenges in cancer immunotherapy

TL;DR: In this review, the advantages and limitations of using antigen-specific T cells are discussed in counterpoint to vaccine strategies.
Journal ArticleDOI

Regulatory T cells in radiotherapeutic responses.

TL;DR: The selective modulation of Treg biology to maintain immune tolerance and control of normal tissue damage, while releasing the “brakes” on anti-tumor immune responses, is a worthy aim with promise for enhancing the therapeutic benefit of RT for cancer.
Journal ArticleDOI

B cell-deficient NOD.H-2h4 mice have CD4+CD25+ T regulatory cells that inhibit the development of spontaneous autoimmune thyroiditis.

TL;DR: H-2h4 mice given three weekly injections of anti-CD25 developed SAT 8 wk after NaI water, suggesting that T reg cells may be nonfunctional when effector T cells are activated; i.e., by autoantigen-presenting B cells.
References
More filters
Journal ArticleDOI

Control of Regulatory T Cell Development by the Transcription Factor Foxp3

TL;DR: Foxp3, which encodes a transcription factor that is genetically defective in an autoimmune and inflammatory syndrome in humans and mice, is specifically expressed in naturally arising CD4+ regulatory T cells and retroviral gene transfer of Foxp3 converts naïve T cells toward a regulatory T cell phenotype similar to that of naturally occurring CD4+.
Journal ArticleDOI

Innate Immune Recognition

TL;DR: Microbial recognition by Toll-like receptors helps to direct adaptive immune responses to antigens derived from microbial pathogens to distinguish infectious nonself from noninfectious self.
Journal ArticleDOI

Foxp3 programs the development and function of CD4 + CD25 + regulatory T cells

TL;DR: It is reported that the forkhead transcription factor Foxp3 is specifically expressed in CD4+CD25+ regulatory T cells and is required for their development and function and ectopic expression ofFoxp3 confers suppressor function on peripheral CD4-CD25− T cells.
Journal ArticleDOI

Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases.

TL;DR: The authors showed that CD4+CD25+ cells contribute to maintaining self-tolerance by downregulating immune response to self and non-self Ags in an Ag-nonspecific manner, presumably at the T cell activation stage.
Journal ArticleDOI

Toll-like receptors.

TL;DR: This unit discusses mammalian Toll receptors (TLR1‐10) that have an essential role in the innate immune recognition of microorganisms and are discussed are TLR‐mediated signaling pathways and antibodies that are available to detect specific TLRs.
Related Papers (5)