scispace - formally typeset
Open AccessJournal ArticleDOI

Conversion of Peripheral CD4+CD25− Naive T Cells to CD4+CD25+ Regulatory T Cells by TGF-β Induction of Transcription Factor Foxp3

Reads0
Chats0
TLDR
Novel evidence is presented that conversion of naive peripheral CD4+CD25− T cells into anergic/suppressor cells that are CD25+, CD45RB−/low and intracellular CTLA-4+ can be achieved through costimulation with T cell receptors (TCRs) and transforming growth factor β (TGF-β).
Abstract
CD4+CD25+ regulatory T cells (Treg) are instrumental in the maintenance of immunological tolerance. One critical question is whether Treg can only be generated in the thymus or can differentiate from peripheral CD4+CD25− naive T cells. In this paper, we present novel evidence that conversion of naive peripheral CD4+CD25− T cells into anergic/suppressor cells that are CD25+, CD45RB−/low and intracellular CTLA-4+ can be achieved through costimulation with T cell receptors (TCRs) and transforming growth factor β (TGF-β). Although transcription factor Foxp3 has been shown recently to be associated with the development of Treg, the physiological inducers for Foxp3 gene expression remain a mystery. TGF-β induced Foxp3 gene expression in TCR-challenged CD4+CD25− naive T cells, which mediated their transition toward a regulatory T cell phenotype with potent immunosuppressive potential. These converted anergic/suppressor cells are not only unresponsive to TCR stimulation and produce neither T helper cell 1 nor T helper cell 2 cytokines but they also express TGF-β and inhibit normal T cell proliferation in vitro. More importantly, in an ovalbumin peptide TCR transgenic adoptive transfer model, TGF-β–converted transgenic CD4+CD25+ suppressor cells proliferated in response to immunization and inhibited antigen-specific naive CD4+ T cell expansion in vivo. Finally, in a murine asthma model, coadministration of these TGF-β–induced suppressor T cells prevented house dust mite–induced allergic pathogenesis in lungs.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells.

TL;DR: It is shown that IL-6, an acute phase protein induced during inflammation, completely inhibits the generation of Foxp3+ Treg cells induced by TGF-β, and the data demonstrate a dichotomy in thegeneration of pathogenic (TH17) T cells that induce autoimmunity and regulatory (Foxp3+) T Cells that inhibit autoimmune tissue injury.
Journal ArticleDOI

The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells.

TL;DR: It is shown that the orphan nuclear receptor RORgammat is the key transcription factor that orchestrates the differentiation of this effector cell lineage of proinflammatory T helper cells and its potential as a therapeutic target in inflammatory diseases is highlighted.
Journal ArticleDOI

IL-17 and Th17 Cells.

TL;DR: The investigation of the differentiation, effector function, and regulation of Th17 cells has opened up a new framework for understanding T cell differentiation and now appreciate the importance of Th 17 cells in clearing pathogens during host defense reactions and in inducing tissue inflammation in autoimmune disease.
Journal ArticleDOI

Regulatory T Cells and Immune Tolerance

TL;DR: The cellular and molecular basis of Treg development and function is revealed and dysregulation of T Regs in immunological disease is implicates.
Journal ArticleDOI

Differentiation of Effector CD4 T Cell Populations

TL;DR: This review summarizes the discovery, functions, and relationships among Th cells; the cytokine and signaling requirements for their development; the networks of transcription factors involved in their differentiation; the epigenetic regulation of their key cytokines and transcription factors; and human diseases involving defective CD4 T cell differentiation.
References
More filters
Journal ArticleDOI

Control of Regulatory T Cell Development by the Transcription Factor Foxp3

TL;DR: Foxp3, which encodes a transcription factor that is genetically defective in an autoimmune and inflammatory syndrome in humans and mice, is specifically expressed in naturally arising CD4+ regulatory T cells and retroviral gene transfer of Foxp3 converts naïve T cells toward a regulatory T cell phenotype similar to that of naturally occurring CD4+.
Journal ArticleDOI

Foxp3 programs the development and function of CD4 + CD25 + regulatory T cells

TL;DR: It is reported that the forkhead transcription factor Foxp3 is specifically expressed in CD4+CD25+ regulatory T cells and is required for their development and function and ectopic expression ofFoxp3 confers suppressor function on peripheral CD4-CD25− T cells.
Journal ArticleDOI

A CD4 + T-cell subset inhibits antigen-specific T-cell responses and prevents colitis

TL;DR: It is shown that chronic activation of both human and murine CD4+T cells in the presence of interleukin (IL)-10 gives rise to CD4-T-cell clones with low proliferative capacity, producing high levels ofIL-10, low levels of IL-2 and no IL-4.
Journal ArticleDOI

Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease

TL;DR: TGF-β1-deficient mice may be valuable models for human immune and inflammatory disorders, including autoimmune diseases, transplant rejection and graft versus host reactions.
Journal ArticleDOI

An essential role for Scurfin in CD4+CD25+ T regulatory cells.

TL;DR: It is shown that Foxp3 is highly expressed by TR cells and is associated with TR cell activity and phenotype, indicating that the Scurfin and CTLA-4 pathways may intersect and providing further insight into the TR cell lineage.
Related Papers (5)