scispace - formally typeset
Journal ArticleDOI

Naturally Arising CD4+ Regulatory T Cells for Immunologic Self-Tolerance and Negative Control of Immune Responses

Shimon Sakaguchi
- 19 Mar 2004 - 
- Vol. 22, Iss: 1, pp 531-562
Reads0
Chats0
TLDR
How naturally arising CD25+CD4+ regulatory T cells contribute to the maintenance of immunologic self-tolerance and negative control of various immune responses, and how they can be exploited to prevent and treat autoimmune disease, allergy, cancer, and chronic infection, or establish donor-specific transplantation tolerance are discussed.
Abstract
▪ Abstract Naturally occurring CD4+ regulatory T cells, the majority of which express CD25, are engaged in dominant control of self-reactive T cells, contributing to the maintenance of immunologic self-tolerance. Their depletion or functional alteration leads to the development of autoimmune disease in otherwise normal animals. The majority, if not all, of such CD25+CD4+ regulatory T cells are produced by the normal thymus as a functionally distinct and mature subpopulation of T cells. Their repertoire of antigen specificities is as broad as that of naive T cells, and they are capable of recognizing both self and nonself antigens, thus enabling them to control various immune responses. In addition to antigen recognition, signals through various accessory molecules and via cytokines control their activation, expansion, and survival, and tune their suppressive activity. Furthermore, the generation of CD25+CD4+ regulatory T cells in the immune system is at least in part developmentally and genetically contro...

read more

Citations
More filters
Journal ArticleDOI

Insights into the Role of Follicular Helper T Cells in Autoimmunity

TL;DR: Regulation of TFH cell differentiation and the GC reaction via miRNA and TFR cells could be important regulatory mechanisms for maintaining immune tolerance and preventing autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA).
Journal ArticleDOI

Role of Toll-like receptors in systemic Candida albicans infections.

TL;DR: Toll-like receptors constitute a family of pattern-recognition receptors that recognize molecular signatures of microbial pathogens and function as sensors for infection and have opened a new perspective for anti-Candida immunointervention.
Journal ArticleDOI

TGF-β–Mediated Foxp3 Gene Expression Is Cooperatively Regulated by Stat5, Creb, and AP-1 through CNS2

TL;DR: Findings suggest that Stat5 is a key regulator for opening up the CNS2 region during induced Treg induction, whereas AP-1 and Creb maintain Enhancer 2 activity.
Journal ArticleDOI

Methylation of FOXP3 in regulatory T cells is related to the severity of coronary artery disease.

TL;DR: It is demonstrated that reduction in Treg cells is associated with ACS in atherosclerotic patients and could be restored by loading (-)-epigallocatechin-3-gallate, a methyltransferase inhibitor.
Journal ArticleDOI

The role of physiological self-antigen in the acquisition and maintenance of regulatory T-cell function.

TL;DR: It is concluded that self‐tolerance involves the continuous priming of T Regs by autoantigens, and in autoimmune disease suppression, the effector T‐cell response is continuously negated by potent disease‐specific Tregs that accumulate at the site of autoantigen presentation.
References
More filters
Journal ArticleDOI

Control of Regulatory T Cell Development by the Transcription Factor Foxp3

TL;DR: Foxp3, which encodes a transcription factor that is genetically defective in an autoimmune and inflammatory syndrome in humans and mice, is specifically expressed in naturally arising CD4+ regulatory T cells and retroviral gene transfer of Foxp3 converts naïve T cells toward a regulatory T cell phenotype similar to that of naturally occurring CD4+.
Journal ArticleDOI

Innate Immune Recognition

TL;DR: Microbial recognition by Toll-like receptors helps to direct adaptive immune responses to antigens derived from microbial pathogens to distinguish infectious nonself from noninfectious self.
Journal ArticleDOI

Foxp3 programs the development and function of CD4 + CD25 + regulatory T cells

TL;DR: It is reported that the forkhead transcription factor Foxp3 is specifically expressed in CD4+CD25+ regulatory T cells and is required for their development and function and ectopic expression ofFoxp3 confers suppressor function on peripheral CD4-CD25− T cells.
Journal ArticleDOI

Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases.

TL;DR: The authors showed that CD4+CD25+ cells contribute to maintaining self-tolerance by downregulating immune response to self and non-self Ags in an Ag-nonspecific manner, presumably at the T cell activation stage.
Journal ArticleDOI

Toll-like receptors.

TL;DR: This unit discusses mammalian Toll receptors (TLR1‐10) that have an essential role in the innate immune recognition of microorganisms and are discussed are TLR‐mediated signaling pathways and antibodies that are available to detect specific TLRs.
Related Papers (5)