scispace - formally typeset
Open AccessJournal ArticleDOI

Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties

Reads0
Chats0
TLDR
The chemical, physical, and mechanical characteristics of nickel-based superalloys are reviewed with emphasis on the use of this class of materials within turbine engines as mentioned in this paper, and the role of major and minor alloying additions in multicomponent commercial cast and wrought super-alloys is discussed.
Abstract
The chemical, physical, and mechanical characteristics of nickel-based superalloys are reviewed with emphasis on the use of this class of materials within turbine engines. The role of major and minor alloying additions in multicomponent commercial cast and wrought superalloys is discussed. Microstructural stability and phases observed during processing and in subsequent elevated-temperature service are summarized. Processing paths and recent advances in processing are addressed. Mechanical properties and deformation mechanisms are reviewed, including tensile properties, creep, fatigue, and cyclic crack growth. I. Introduction N ICKEL-BASED superalloys are an unusual class of metallic materials with an exceptional combination of hightemperature strength, toughness, and resistance to degradation in corrosive or oxidizing environments. These materials are widely used in aircraft and power-generation turbines, rocket engines, and other challenging environments, including nuclear power and chemical processing plants. Intensive alloy and process development activities during the past few decades have resulted in alloys that can tolerate average temperatures of 1050 ◦ C with occasional excursions (or local hot spots near airfoil tips) to temperatures as high as 1200 ◦ C, 1 which is approximately 90% of the melting point of the material. The underlying aspects of microstructure and composition that result in these exceptional properties are briefly reviewed here. Major classes of superalloys that are utilized in gas-turbine engines and the corresponding processes for their production are outlined along with characteristic mechanical and physical properties.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Alloy information helps prioritize material criticality lists

TL;DR: In this article , the authors expand upon lists of critical materials generated by national and regional governments by showing that many materials are employed predominantly as alloying elements, which can be a deterrent to recovery and reuse at end of product life and, likely as a consequence, have low functional end-of-life recycling rates.
Journal ArticleDOI

The effect of cooling rate on the γ' composition, morphology and corrosion behaviour of IN738LC

TL;DR: In this paper, the influence of γ' size and composition on the corrosion behavior of IN738LC superalloy was investigated while maintaining a monomodal microstructure.
Journal ArticleDOI

The Influence of Process Parameters and Build Orientation on the Creep Behaviour of a Laser Powder Bed Fused Ni-based Superalloy for Aerospace Applications

TL;DR: The Small Punch Creep (SPC) test method has been deemed an effective tool to rank the elevated temperature performance of alloys processed through ALM, credited to the small volumes of material utilised in each test and the ability to sample material from discrete locations.
Journal ArticleDOI

Micromechanical testing of ultrathin layered material specimens at elevated temperature

TL;DR: In this article, an experimental procedure for the local characterisation of mechanical and thermal properties at elevated temperature is presented for ultrathin specimens at very high temperature is challenging in terms of specimen preparation and mechanical testing under "inert" atmospheres.
Journal ArticleDOI

Superior cyclic life of thermal barrier coatings with advanced bond coats on single-crystal superalloys

TL;DR: In this article, TBC samples on single-crystal substrates (comparable to CMSX4) with thin Oxide dispersion strengthened (ODS) Co-based flash coat and a porous atmosphereherically plasma sprayed (APS) yttria stabilized zirconia (YSZ) topcoat were manufactured by thermal spray techniques and evaluated with respect to their thermal cyclic behavior.
References
More filters
Book

Dislocations in solids

TL;DR: In this article, Bertotti, Ferro, and Mazetti proposed a theory of dislocation drag in covalent crystals and formed a model of the formation and evolution of dislocations during irradiation.
Journal ArticleDOI

Creep resistance of CMSX-3 nickel base superalloy single crystals

TL;DR: In this paper, the authors studied the effect of dislocation-free nickel base superalloy single crystals with high volume fractions of the γ′ phase on their deformation and found that the dislocation free precipitates are resistant to shearing by dislocations.
Journal ArticleDOI

The precipitation of topologically close-packed phases in rhenium-containing superalloys

TL;DR: In this paper, the formation of topologically close-packed (TCP) phases due to the addition of solid solution strengtheners, such as rhenium, molybdenum and tungsten, has been studied.
Journal ArticleDOI

Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation

TL;DR: In this paper, it is established from metallographic and flow stress observations that dynamic recrystallization occurs at strains greater than a critical value and results in a recrystized grain size which is determined entirely by the flow stress.
Journal ArticleDOI

Creep behaviour of Ni-base single-crystal superalloys with various γ' volume fraction

TL;DR: In this article, a third generation Ni-base single-crystal superalloy TMS-75 and its γ/γ " tie line alloys were designed to contain various volume fractions of γ, while the compositions of two individual phases were kept the same.