scispace - formally typeset
Open AccessDissertation

On Linear Transmission Systems

TLDR
The object in Part I is to study the impact of both the signaling rate and the pulse shape on the information rate of single antenna, single carrier linear modulation systems, and a iterative optimization method is developed, which produces precoders improving upon the best known ones in the literature.
Abstract
This thesis is divided into two parts. Part I analyzes the information rate of single antenna, single carrier linear modulation systems. The information rate of a system is the maximum number of bits that can be transmitted during a channel usage, and is achieved by Gaussian symbols. It depends on the underlying pulse shape in a linear modulated signal and also the signaling rate, the rate at which the Gaussian symbols are transmitted. The object in Part I is to study the impact of both the signaling rate and the pulse shape on the information rate. Part II of the thesis is devoted to multiple antenna systems (MIMO), and more specifically to linear precoders for MIMO channels. Linear precoding is a practical scheme for improving the performance of a MIMO system, and has been studied intensively during the last four decades. In practical applications, the symbols to be transmitted are taken from a discrete alphabet, such as quadrature amplitude modulation (QAM), and it is of interest to find the optimal linear precoder for a certain performance measure of the MIMO channel. The design problem depends on the particular performance measure and the receiver structure. The main difficulty in finding the optimal precoders is the discrete nature of the problem, and mostly suboptimal solutions are proposed. The problem has been well investigated when linear receivers are employed, for which optimal precoders were found for many different performance measures. However, in the case of the optimal maximum likelihood (ML) receiver, only suboptimal constructions have been possible so far. Part II starts by proposing new novel, low complexity, suboptimal precoders, which provide a low bit error rate (BER) at the receiver. Later, an iterative optimization method is developed, which produces precoders improving upon the best known ones in the literature. The resulting precoders turn out to exhibit a certain structure, which is then analyzed and proved to be optimal for large alphabets.

read more

Content maybe subject to copyright    Report

Citations
More filters
Dissertation

Reduced Receivers for Faster-than-Nyquist Signaling and General Linear Channels

Adnan Prlja
TL;DR: A framework to design reduced-complexity receivers for FTN and general linear channels that achieve optimal or near-optimal performance and an improvement of the minimum phase conversion that sharpens the focus of the ISI model energy is proposed.
References
More filters
Journal ArticleDOI

A vector-perturbation technique for near-capacity multiantenna multiuser communication-part II: perturbation

TL;DR: A simple encoding algorithm is introduced that achieves near-capacity at sum-rates of tens of bits/channel use and a certain perturbation of the data using a "sphere encoder" can be chosen to further reduce the energy of the transmitted signal.
Journal ArticleDOI

Limited feedback unitary precoding for spatial multiplexing systems

TL;DR: This correspondence proposes a quantized precoding system where the optimal precoder is chosen from a finite codebook known to both receiver and transmitter and performs close to optimal unitary precoding with a minimal amount of feedback.
Book

Symmetric bilinear forms

TL;DR: In this article, the Hasse-Minkowski Theorem and the Signature mod 8 of the Quadratic Reciprocity Theorem are used to describe the inner product spaces over a field.
Journal ArticleDOI

Optimal designs for space-time linear precoders and decoders

TL;DR: A new paradigm for the design of transmitter space-time coding is introduced that is referred to as linear precoding, which leads to simple closed-form solutions for transmission over frequency-selective multiple-input multiple-output (MIMO) channels, which are scalable with respect to the number of antennas, size of the coding block, and transmit average/peak power.
Journal ArticleDOI

A transmit preprocessing technique for multiuser MIMO systems using a decomposition approach

TL;DR: A transmit preprocessing technique for the downlink of multiuser multiple-input multiple-output (MIMO) systems is introduced and results demonstrate the potential of the technique in terms of performance and capacity.
Related Papers (5)