scispace - formally typeset
Open Access

Phenomenological Model of a Magnetorheological Damper

TLDR
In this article, a new model for controllable fluid dampers is proposed that can effectively portray the behavior of a typical magnetorheological damper and compared with experimental results for a prototype damper indicates that the model is accurate over a wide range of operating conditions.
Abstract
Semi-active control devices have received significant attention in recent years because they offer the adaptability of active control devices without requiring the associated large power sources. Magnetorheological (MR) dampers are semi-active control devices that use MR fluids to produce controllable dampers. They potentially offer highly reliable operation and can be viewed as fail-safe in that they become passive dampers should the control hardware malfunction. To develop control algorithms that take maximum advantage of the unique features of the MR damper, models must be developed that can adequately characterize the damper’s intrinsic nonlinear behavior. Following a review of several idealized mechanical models for controllable fluid dampers, a new model is proposed that can effectively portray the behavior of a typical magnetorheological damper. Comparison with experimental results for a prototype damper indicates that the model is accurate over a wide range of operating conditions and is adequate for control design and analysis.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Structural control: past, present, and future

TL;DR: In this paper, the authors provide a concise point of departure for researchers and practitioners alike wishing to assess the current state of the art in the control and monitoring of civil engineering structures, and provide a link between structural control and other fields of control theory.
Journal ArticleDOI

Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction

TL;DR: In this paper, a clipped-optimal control strategy based on acceleration feedback for controlling magnetorheological dampers is proposed to reduce structural responses due to seismic loads, and a numerical example, employing a newly developed model that accurately portrays the salient characteristics of the MR dampers, is presented to illustrate the effectiveness of the approach.
Journal ArticleDOI

State of the art of structural control

TL;DR: In this paper, the authors review the recent and rapid developments in semi-active structural control and its implementation in full-scale structures, and present an alternative to active and hybrid control for structural vibration reduction.
Journal ArticleDOI

Supplemental energy dissipation: state-of-the-art and state-of-the- practice

TL;DR: In this paper, the state-of-the-art structural control systems for wind and seismic response of buildings and bridges are discussed, as well as their advantages and limitations in the context of seismic design and retrofit.
Journal ArticleDOI

Recent advances in nonlinear passive vibration isolators

TL;DR: In this paper, a comprehensive assessment of recent developments of nonlinear isolators in the absence of active control means is presented, which highlights resolved and unresolved problems and recommendations for future research directions.
References
More filters
Journal ArticleDOI

Method for Random Vibration of Hysteretic Systems

TL;DR: In this paper, a new method of modeling and solution of a large class of hysteretic systems (softening or hardening, narrow or wideband) under random excitation is proposed.
Journal ArticleDOI

Induced Fibration of Suspensions

TL;DR: In this article, the authors describe some of the phenomena found to have their origin in electrically induced fibration of small particles in fluid liquid suspension, including the induced shear resistances found in layers of the fluid when bounded by potentialized electrode surfaces.
Journal ArticleDOI

Active Structural Control: Theory and Practice

TL;DR: In this article, practical considerations control mechanisms optimization of actively controlled structures are considered, and an algorithm for actively controlled structure control algorithms is proposed, with a focus on the control mechanism optimization.
Journal ArticleDOI

The Magnetic Fluid Clutch

TL;DR: A new type of magnetic fluid and several classes of new devices utilizing this fluid have been developed at the National Bureau of Standards as discussed by the authors, and one application of this fluid has been in electromagnetic clutches, but the electro-magnetically controlled mixture offers promise for other uses also.
Journal ArticleDOI

Commercial magneto-rheological fluid devices

TL;DR: Controllable magnetorheological (MR) fluid devices have reached the stage where they are in commercial production as discussed by the authors, and such devices are finding application in a variety of real world situations ranging...
Related Papers (5)