scispace - formally typeset
Journal ArticleDOI

Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field.

Reads0
Chats0
TLDR
This work uses explicit solvent molecular dynamics free energy perturbation to predict the absolute solvation free energies of a set of 239 small molecules, spanning diverse chemical functional groups commonly found in drugs and drug-like molecules and shows that predictions can be improved by using a semiempirical charge assignment method with an implicit bond charge correction.
Abstract
The accurate prediction of protein−ligand binding free energies is a primary objective in computer-aided drug design. The solvation free energy of a small molecule provides a surrogate to the desolvation of the ligand in the thermodynamic process of protein−ligand binding. Here, we use explicit solvent molecular dynamics free energy perturbation to predict the absolute solvation free energies of a set of 239 small molecules, spanning diverse chemical functional groups commonly found in drugs and drug-like molecules. We also compare the performance of absolute solvation free energies obtained using the OPLS_2005 force field with two other commonly used small molecule force fields—general AMBER force field (GAFF) with AM1-BCC charges and CHARMm-MSI with CHelpG charges. Using the OPLS_2005 force field, we obtain high correlation with experimental solvation free energies (R2 = 0.94) and low average unsigned errors for a majority of the functional groups compared to AM1-BCC/GAFF or CHelpG/CHARMm-MSI. However, ...

read more

Citations
More filters
Journal ArticleDOI

Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments

TL;DR: It is shown that database enrichment is improved with proper preparation and that neglecting certain steps of the preparation process produces a systematic degradation in enrichments, which can be large for some targets.
Journal ArticleDOI

OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins

TL;DR: Together, the improvements made to both the small molecule and protein force field lead to a high level of accuracy in predicting protein-ligand binding measured over a wide range of targets and ligands (less than 1 kcal/mol RMS error) representing a 30% improvement over earlier variants of the OPLS force field.
Journal ArticleDOI

Improved Docking of Polypeptides with Glide

TL;DR: The optimized polypeptide protocol is most accurate for extended peptides of limited size and number of formal charges, defining a domain of applicability for this approach.
Journal ArticleDOI

KDEEP: Protein–Ligand Absolute Binding Affinity Prediction via 3D-Convolutional Neural Networks

TL;DR: This work proposes here a fast machine-learning approach for predicting binding affinities using state-of-the-art 3D-convolutional neural networks and compares this approach to other machine- learning and scoring methods using several diverse data sets.
Journal ArticleDOI

Virtual screening strategies in drug discovery: a critical review.

TL;DR: This review provides a comprehensive appraisal of several VS approaches currently available and special emphasis will be given to in silico chemogenomics approaches which utilize annotated ligand-target as well as protein-ligand interaction databases and which could predict or reveal promiscuous binding and polypharmacology.
References
More filters
Journal ArticleDOI

Comparison of simple potential functions for simulating liquid water

TL;DR: In this article, the authors compared the Bernal Fowler (BF), SPC, ST2, TIPS2, TIP3P, and TIP4P potential functions for liquid water in the NPT ensemble at 25°C and 1 atm.
Journal ArticleDOI

A smooth particle mesh Ewald method

TL;DR: It is demonstrated that arbitrary accuracy can be achieved, independent of system size N, at a cost that scales as N log(N), which is comparable to that of a simple truncation method of 10 A or less.
Journal ArticleDOI

Development and testing of a general amber force field.

TL;DR: A general Amber force field for organic molecules is described, designed to be compatible with existing Amber force fields for proteins and nucleic acids, and has parameters for most organic and pharmaceutical molecules that are composed of H, C, N, O, S, P, and halogens.
Journal ArticleDOI

GROMACS: Fast, flexible, and free

TL;DR: The software suite GROMACS (Groningen MAchine for Chemical Simulation) that was developed at the University of Groningen, The Netherlands, in the early 1990s is described, which is a very fast program for molecular dynamics simulation.
Journal ArticleDOI

Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids

TL;DR: In this article, the parametrization and testing of the OPLS all-atom force field for organic molecules and peptides are described, and the parameters for both torsional and non-bonded energy properties have been derived, while the bond stretching and angle bending parameters have been adopted mostly from the AMBER force field.
Related Papers (5)