scispace - formally typeset
Search or ask a question

Showing papers in "Current Medicinal Chemistry in 2013"


Journal ArticleDOI
TL;DR: This review provides a comprehensive appraisal of several VS approaches currently available and special emphasis will be given to in silico chemogenomics approaches which utilize annotated ligand-target as well as protein-ligand interaction databases and which could predict or reveal promiscuous binding and polypharmacology.
Abstract: Virtual screening (VS) is a powerful technique for identifying hit molecules as starting points for medicinal chemistry. The number of methods and softwares which use the ligand and target-based VS approaches is increasing at a rapid pace. What, however, are the real advantages and disadvantages of the VS technology and how applicable is it to drug discovery projects? This review provides a comprehensive appraisal of several VS approaches currently available. In the first part of this work, an overview of the recent progress and advances in both ligand-based VS (LBVS) and structure-based VS (SBVS) strategies highlighting current problems and limitations will be provided. Special emphasis will be given to in silico chemogenomics approaches which utilize annotated ligand-target as well as protein-ligand interaction databases and which could predict or reveal promiscuous binding and polypharmacology, the knowledge of which would help medicinal chemists to design more potent clinical candidates with fewer side effects. In the second part, recent case studies (all published in the last two years) will be discussed where the VS technology has been applied successfully. A critical analysis of these case studies provides a good platform in order to estimate the applicability of various VS strategies in the new lead identification and optimization.

477 citations


Journal ArticleDOI
X. Cai1, Z. Fang, J. Dou, A. Yu, Guangxi Zhai 
TL;DR: Enhanced bioavailability of QC in the near future is likely to bring this product to the forefront of therapeutic agents for treatment of human disease.
Abstract: Quercetin (QC) is a typical plant flavonoid, possesses diverse pharmacologic effects including antiinflammatory, antioxidant, anti-cancer, anti-anaphylaxis effects and against aging. However, the application of QC in pharmaceutical field is limited due to its poor solubility, low bioavailability, poor permeability and instability. To improve the bioavailability of QC, numerous approaches have been undertaken, involving the use of promising drug delivery systems such as inclusion complexes, liposomes, nanoparticles or micelles, which appear to provide higher solubility and bioavailability. Enhanced bioavailability of QC in the near future is likely to bring this product to the forefront of therapeutic agents for treatment of human disease.

276 citations


Journal ArticleDOI
TL;DR: The evidence of the biological actions of honey can be ascribed to its polyphenolic contents which, in turn, are usually associated to its antioxidant and anti-inflammatory actions, as well as to its cardiovascular, antiproliferative and antimicrobial benefits.
Abstract: In the long human tradition honey has been used not only as a nutrient but also as a medicine. Its composition is rather variable and depends on the floral source and on external factors, such as seasonal, environmental conditions and processing. In this review, specific attention is focused on absorption, metabolism, and beneficial biological activities of honey compounds in human. Honey is a supersaturated solution of sugars, mainly composed of fructose (38%) and glucose (31%), containing also minerals, proteins, free amino acids, enzymes, vitamins and polyphenols. Among polyphenols, flavonoids are the most abundant and are closely related to its biological functions. Honey positively affects risk factors for cardiovascular diseases by inhibiting inflammation, improving endothelial function, as well as the plasma lipid profile, and increasing low-density lipoprotein resistance to oxidation. Honey also displays an important antitumoral capacity, where polyphenols again are considered responsible for its complementary and overlapping mechanisms of chemopreventive activity in multistage carcinogenesis, by inhibiting mutagenesis or inducing apoptosis. Moreover, honey positively modulates the glycemic response by reducing blood glucose, serum fructosamine or glycosylated hemoglobin concentrations and exerts antibacterial properties caused by its consistent amount of hydrogen peroxide and non-peroxide factors as flavonoids, methylglyoxal and defensin-1 peptide. In conclusion, the evidence of the biological actions of honey can be ascribed to its polyphenolic contents which, in turn, are usually associated to its antioxidant and anti-inflammatory actions, as well as to its cardiovascular, antiproliferative and antimicrobial benefits.

233 citations


Journal ArticleDOI
TL;DR: In postmenopausal patients with ER+ BC adjuvant treatment with AIs should be performed, either as sequential treatment after tamoxifen or as upfront therapy, based on the results of studies evaluating the role of AIs as first-line therapy.
Abstract: Estrogen receptor (ER) expression is the main indicator of potential responses to endocrine therapy (ET), and approximately 70% of human breast cancers (BCs) are hormone-dependent and ER-positive. The introduction of adjuvant systemic therapy led to a significant improvement in post-surgical survival and a reduction in disease relapse, especially in women with early BC and those with ER+ tumors, who may receive ET alone or in combination with cytotoxic therapy. Adjuvant ET currently consists of (i) ovarian suppression, (ii) selective estrogen receptor modulators (SERMs) and down-regulators, and (iii) aromatase inhibitors (AIs). In patients with ER+ tumors pharmacologic ovary suppression with gonadotropin-releasing hormone agonists in combination with standard adjuvant therapy is generally more effective than adjuvant chemotherapy alone. Tamoxifen is the best established SERM, has favorable effects on BC control and bone metabolism, but also has adverse effects due to its estrogenic activity in other tissues. For these reasons, other SERMs have been developed. Fulvestrant is an ER down-regulator with several potential advantages over SERMs, including a 100-fold increase in its affinity for ER compared with tamoxifen and no estrogen-like activity in the uterus. The inhibition of the aromatase system with third-generation AIs is associated with improved survival in patients with advanced BC compared with SERMs. In postmenopausal patients with ER+ BC adjuvant treatment with AIs should be performed, either as sequential treatment after tamoxifen or as upfront therapy. Studies evaluating the role of AIs as first-line therapy are ongoing and the results are encouraging.

231 citations


Journal ArticleDOI
TL;DR: Current challenges in the field of protein-ligand docking such as the treatment of protein flexibility, the presence of structural water molecules and its effect in docking, and the entropy of binding are dissected and discussed, trying to anticipate the next years in this field.
Abstract: Protein-ligand docking is currently an important tool in drug discovery efforts and an active area of research that has been the subject of important developments over the last decade. These are well portrayed in the rising number of available protein-ligand docking software programs, increasing level of sophistication of its most recent applications, and growing number of users. While starting by summarizing the key concepts in protein-ligand docking, this article presents an analysis of the evolution of this important field of research over the past decade. Particular attention is given to the massive range of alternatives, in terms of protein-ligand docking software programs currently available. The emerging trends in this field are the subject of special attention, while old established docking alternatives are critically revisited. Current challenges in the field of protein-ligand docking such as the treatment of protein flexibility, the presence of struc- tural water molecules and its effect in docking, and the entropy of binding are dissected and discussed, trying to anticipate the next years in the field.

205 citations


Journal ArticleDOI
TL;DR: This review tries to give a critical answer to why there are still no commercially available or commonly used antibiotics of plant origin by considering potential mechanisms of antimicrobial action of PSMs, as well as their physical and chemical properties.
Abstract: Microbial infectious diseases continue to be one of the leading causes of morbidity and mortality. It has been estimated that microbial species comprise about 60% of the Earth's biomass. This, together with the fact that their genetic, metabolic and physiological diversity is extraordinary, makes them a major threat to the health and development of populations across the world. Widespread antibiotic resistance, the emergence of new pathogens in addition to the resurgence of old ones, and the lack of effective new therapeutics exacerbate the problems. Thus, the need to discover and develop new antimicrobial agents is critical to improve mankind's future health. Plant secondary metabolites (PSMs) offer particular promise in this sense. Plant Kingdom could be considered a rich source of the most diverse structures (e.g. there are more than 12,000 known alkaloids, more than 8,000 phenolic compounds and over 25,000 different terpenoids), many of which were proven to possess strong antimicrobial properties (e.g. thymol, eurabienol, etc.). In many instances, PSMs can be easily isolated from the plant matrix, either in pure state or in the form of mixtures of chemically related compounds. What is also important is that the development of bacterial resistance toward natural plant products (that are generally regarded as eco-friendly) has been thus far documented in a very limited number of cases (e.g. for reserpine). Having all of the mentioned advantages of PSMs as potential antimicrobials in mind, a major question arises: why is it that there are still no commercially available or commonly used antibiotics of plant origin? This review tries to give a critical answer to this question by considering potential mechanisms of antimicrobial action of PSMs (inhibition of cell wall or protein synthesis, inducing leakage from the cells by tampering with the function of the membranes, interfering with intermediary metabolisms or DNA/RNA synthesis/function), as well as their physical and chemical properties (e.g. hydrophilicity/lipophilicity, chemical stability). To address the possible synergistic/antagonistic effects between PSMs and with standard antibiotics, special attention has been given to the antimicrobial activity of PSM-mixtures (e.g. essential oils, plant extracts). Moreover, possible ways of overcoming some of PSMs molecular limitations in respect to their usage as potential antibiotics were also discussed (e.g. derivatization that would enable fine tuning of certain molecular characteristics).

197 citations


Journal ArticleDOI
TL;DR: Hyperglycaemia and local hypertension are known to be a direct cause of pericyte apoptosis and dropout, and intracellular biochemical pathways of the glucose metabolites have been explored, however, the exact mechanisms are not yet fully understood and need further clarification.
Abstract: The onset of diabetic retinopathy is characterized by morphologic alterations of the microvessels, with thickening of the basement membrane, loss of inter-endothelial tight junctions and early and selective loss of pericytes, together with increased vascular permeability, capillary occlusions, microaneurysms and, later, loss of endothelial cells (EC). A key role in the evolution of the disease is played by pericytes, specialized contractile mesenchymal cells of mesodermal origin, that, in capillaries, exert a function similar to smooth muscle cells in larger vessels, regulating vascular tone and perfusion pressure. Thickening of the basement membrane, together with systemic and local hypertension, hyperglycaemia, advanced glycation end-product formation and hypoxia, may disrupt the tight link between pericytes and EC causing pericyte apoptosis, while endothelium, deprived of proliferation control, can give rise to new vessels. Pericyte dropout has great consequences on capillary remodelling and may cause the first abnormalities of the diabetic eye which can be observed clinically. Hyperglycaemia and local hypertension are known to be a direct cause of pericyte apoptosis and dropout, and intracellular biochemical pathways of the glucose metabolites have been explored. However, the exact mechanisms are not yet fully understood and need further clarification in order to develop new effective drugs for the prevention of retinopathy.

196 citations


Journal ArticleDOI
TL;DR: The current review covers and discusses the basic evidence and role of oxidative stress in AD development and Alteration in mitochondrial function and deposition of heavy metals are reported.
Abstract: Alzheimer´s disease (AD) is a neurodegenerative disorder with no known cure and rapid rise in incidence. The predominant cognitive impairment is currently treated using cognitive enhancers like cholinesterase inhibitors. The two molecular hallmarks of AD are amyloid plaques created from an amyloid precursor protein and hyperphosphorylated tau protein that is deposited as neurofibrillary tangles inside neurons. A number of pathological mechanisms follow or precede these formations. Alteration in mitochondrial function and deposition of heavy metals are reported. The disease progression is enhanced by oxidative stress. However, the role of oxidative stress is not universally accepted. The current review covers and discusses the basic evidence and role of oxidative stress in AD development.

186 citations


Journal ArticleDOI
TL;DR: The premise is that MTDs have inherent advantages over combinations, and their use in current clinical practice, their likely application in the future, and the challenges to be overcome to achieve this goal are explored.
Abstract: Polypharmacology offers a model for the way drug discovery must evolve to develop therapies most suited to treating currently incurable diseases. It is driven by a worldwide demand for safer, more effective, and affordable medicines against the most complex diseases, and by the failures of modern drug discovery to provide these. Polypharmacology can involve combinations and/or multitarget drugs (MTD). Although not mutually exclusive, my premise is that MTDs have inherent advantages over combinations. This review article focuses on MTDs from a medicinal chemistry perspective. I will explore their use in current clinical practice, their likely application in the future, and the challenges to be overcome to achieve this goal.

179 citations


Journal ArticleDOI
TL;DR: This review summarises the main MS- and NMR-based approaches that are used to perform metabolomics studies and discusses the potential and current limitations of the various methods.
Abstract: Metabolomics is playing an increasingly important role in plant science. It aims at the comprehensive analysis of the plant metabolome which consists both of primary and secondary metabolites. The goal of metabolomics is ultimately to identify and quantify this wide array of small molecules in biological samples. This new science is included in several systems biology approaches and is based primarily on the unbiased acquisition of mass spectrometric (MS) or nuclear magnetic resonance (NMR) data from carefully selected samples. This approach provides the most ‘‘functional’’ information of the ‘omics’ technologies of a given organism since metabolites are the end products of the cellular regulatory processes. The application of state-of-the-art data mining, that includes various untargeted and targeted multivariate data analysis methods, to the vast amount of data generated by this data-driven approach leads to sample classification and the identification of relevant biomarkers. The biological areas that have been successfully studied by this holistic approach include global metabolite composition assessment, mutant and phenotype characterisation, taxonomy, developmental processes, stress response, interaction with the environment, quality control assessment, lead finding and mode of action of botanicals. This review summarises the main MS- and NMR-based approaches that are used to perform these studies and discusses the potential and current limitations of the various methods. The intent is not to provide an exhaustive overview of the field, which has grown considerably over the past decade, but to summarise the main strategies that are used and to discuss the potential and limitations of the different approaches as well as future trends.

174 citations


Journal ArticleDOI
TL;DR: A large number of bioactive pentacyclic triterpenoids have shown multiple biological activities with apparent effects on glucose absorption, glucose uptake, insulin secretion, diabetic vascular dysfunction, retinopathy and nephropathy, providing a promising approach for diabetes management.
Abstract: Pentacyclic triterpenoids including the oleanane, ursane and lupane groups are widely distributed in many medicinal plants, such as Glycyrrhiza species, Gymnema species, Centella asiatica, Camellia sinensis, Crataegus species and Olea europaea, which are commonly used in traditional medicine for the treatment of diabetes and diabetic complications. A large number of bioactive pentacyclic triterpenoids, such as oleanolic acid, glycyrrhizin, glycyrrhetinic acid, ursolic acid, betulin, betulinic acid and lupeol have shown multiple biological activities with apparent effects on glucose absorption, glucose uptake, insulin secretion, diabetic vascular dysfunction, retinopathy and nephropathy. The versatility of the pentacyclic triterpenes provides a promising approach for diabetes management.

Journal ArticleDOI
TL;DR: The studies focused on the structure-activity relationships (SARs) of these compounds that have used medicinal chemistry to generate more potent antioxidant molecules concluded that the presence of ortho-dihydroxy phenyl group (catechol moiety) is of significant importance to the antioxidant activity, while, the absence of three hydroxy groups does not necessarily improve the activity.
Abstract: Hydroxycinnamic acids (HCAs) are important phytochemicals possessing significant biological properties. Several investigators have studied in vitro antioxidant activity of HCAs in detail. In this review, we have gathered the studies focused on the structure-activity relationships (SARs) of these compounds that have used medicinal chemistry to generate more potent antioxidant molecules. Most of the reports indicated that the presence of an unsaturated bond on the side chain of HCAs is vital to their activity. The structural features that were reported to be of importance to the antioxidant activity were categorized as follows: modifications of the aromatic ring, which include alterations in the number and position of hydroxy groups and insertion of electron donating or withdrawing moieties as well as modifications of the carboxylic function that include esterification and amidation process. Furthermore, reports that have addressed the influence of physicochemical properties including redox potential, lipid solubility and dissociation constant on the antioxidant activity were also summarized. Finally, the pro-oxidant effect of HCAs in some test systems was addressed. Most of the investigations concluded that the presence of ortho-dihydroxy phenyl group (catechol moiety) is of significant importance to the antioxidant activity, while, the presence of three hydroxy groups does not necessarily improve the activity. Optimization of the structure of molecular leads is an important task of modern medicinal chemistry and its accomplishment relies on the careful assessment of SARs. SAR studies on HCAs can identify the most successful antioxidants that could be useful for management of oxidative stress-related diseases.

Journal ArticleDOI
TL;DR: Because resveratrol has anti-inflammatory, anti-oxidant, and hypotriglyceridemic effects, its supplementation may beneficially affect the increased cardiovascular risk of healthy smokers.
Abstract: Objective: Smokers are characterized by a low-grade systemic inflammatory state and an oxidant-antioxidant imbalance. Few human studies were conducted on the effects of resveratrol, a natural compound with anti-inflammatory and antioxidant properties, and no trial on smokers has been performed to date. We evaluated whether resveratrol has beneficial effects on markers of inflammation and oxidative stress in smokers. Methods and Results: A randomized, double- blind, cross-over trial was performed in 50 healthy adult smokers: 25 were randomly allocated to “resveratrol-first” (30-days: 500mg resveratrol/day, 30-days wash-out, 30-days placebo) and 25 to “placebo-first” (30-days placebo, 30-days wash-out, 30-days 500mg resveratrol/day). Resveratrol significantly reduced C-reactive protein (CRP) and triglyceride concentrations, and increased Total Antioxidant Status (TAS) values. After analyzing data with general linear models to assess period and carry-over effects, the ratios of the values after resveratrol to those after placebo were respectively: 0.47 (95%CI 0.38-0.59) –CRP- and 0.71 (95%CI 0.65-0.78) –triglycerides-, while TAS increased by 74.2 μmol/L (95%CI 60.8-87.6). Uric acid, glucose, insulin, cholesterol, liver enzyme concentrations, and weight, waist circumference, and blood pressure values did not significantly change after resveratrol supplementation. Conclusions: Because resveratrol has anti-inflammatory, anti-oxidant, and hypotriglyceridemic effects, its supplementation may beneficially affect the increased cardiovascular risk of healthy smokers.

Journal ArticleDOI
TL;DR: The present review will resume the most recent developments in the medicinal chemistry ofCurcumin and curcumin-like molecules.
Abstract: Curcumin is the major yellow pigment extracted from turmeric, a commonly used spice in Asian cuisine and extensively employed in ayurvedic herbal remedies. A number of studies have shown that curcumin can be a prevention and a chemotherapeutic agent for colon, skin, oral and intestinal cancers. Curcumin is also well known for its antiinflammatory and antioxidant properties, showing high reactivity towards peroxyl radicals, and thus acting as a free radical scavenger. Recently, experimental studies have demonstrated that curcumin might be used in the prevention and the cure of Alzheimer’s disease. Indeed, curcumin injected peripherally in vivo into aged Tg mice crossed the blood-brain barrier and bound to amyloid plaques, reducing amyloid levels and plaque formation decisively. The present review will resume the most recent developments in the medicinal chemistry of curcumin and curcumin-like molecules.

Journal ArticleDOI
TL;DR: Comment on how inflammation, the metabolic derangements associated with diabetes, loss of neuroprotective factors, and dysregulated glutamate metabolism may contribute to retinal neurodegeneration during diabetes.
Abstract: Diabetic retinopathy (DR), commonly classified as a microvascular complication of diabetes, is now recognized as a neurovascular complication or sensory neuropathy resulting from disruption of the neurovascular unit. Current therapies for DR target the vascular complication of the disease process, including neovascularization and diabetic macular edema. Since neurodegeneration is an early event in the pathogenesis of DR, it will be important to unravel the mechanisms that contribute to neuroretinal cell death in order to develop novel treatments for the early stages of DR. In this review we comment on how inflammation, the metabolic derangements associated with diabetes, loss of neuroprotective factors, and dysregulated glutamate metabolism may contribute to retinal neurodegeneration during diabetes. Promising potential therapies based on these specific aspects of DR pathophysiology are also discussed. Finally, we stress the importance of developing and validating new markers of visual function that can be used to shorten the duration of clinical trials and accelerate the delivery of novel treatments for DR to the public.

Journal ArticleDOI
TL;DR: An overview of literature data about sweat drug testing procedures for various xenobiotics especially cocaine metabolites, opiates, cannabis and amphetamines is provided.
Abstract: Sweat is an alternative biological matrix useful to detect drugs of abuse intake. It is produced by eccrine and apocrine glands originating in the skin dermis and terminating in secretory canals that flow into the skin surface and hair follicles. Since many years it has been demonstrated that endogenous and exogenous chemicals are secreted in this biological sample hence its collection and analysis could show the past intake of xenobiotics. From the seventies the excretion of drugs of abuse has been investigated in human skin excretion; later in nineties forensic scientists began to experiment some techniques to trap sweat for analyses. Even if the use of skin excretions for drug testing has been restricted mainly by difficulties in sample recovery, the marketing of systems for the sample collection has allowed successful sweat testing for several drugs of abuse. In the recent years sweat testing developed a noninvasive monitoring of drug exposure in various contexts as criminal justice, employment and outpatient clinical settings. This paper provides an overview of literature data about sweat drug testing procedures for various xenobiotics especially cocaine metabolites, opiates, cannabis and amphetamines. Issues related to collection, analysis and interpretation of skin excretions as well as its advantages and disadvantages are discussed. Moreover the chance to apply the technique to some particular situation such as workplace drug testing, drivers, doping or prenatal diagnosis, the comparison between sweat and other non conventional matrices are also reviewed. According to literature data the analysis of sweat may be usefully alternative for verifying drug history and for monitoring compliance.

Journal ArticleDOI
TL;DR: The results showed that resveratrol not only inhibited cell proliferation, migration, and invasion in a dose-dependent manner, but also mediated the expression of EMT-related genes which are important for cancer cellular motility, invasiveness and metastasis during tumorigenesis.
Abstract: Resveratrol (trans-3,4′,5-trihydroxystilbene), a natural polyphenolic compound detected in grapes, berries, and peanuts, possesses a wide spectrum of pharmacological properties, including anti-tumor metastasis activities. However, the underlying mechanisms through which resveratrol inhibits the metastasis of pancreatic cancer are still not fully elucidated. As epithelial-to-mesenchymal transition (EMT) is a key player for metastasis in tumor, the aim of this study is to determine whether resveratrol affects EMT in pancreatic cancer cells and the related mechanism. The results showed that resveratrol not only inhibited cell proliferation, migration, and invasion in a dose-dependent manner, but also mediated the expression of EMT-related genes (E-cadherin, N-cadherin, vimentin, MMP-2, and MMP-9) which are important for cancer cellular motility, invasiveness and metastasis during tumorigenesis. In addition, the levels of phospho-Akt and phospho-NF-κB in BxPC-3 and Panc-1 cells were reduced by both resveratrol and LY294002 (a PI3-K inhibitor). Furthermore, transforming growth factor-β (TGF-β)-induced alterations in cell morphology that are characteristic of EMT as well as increased cell invasive ability could also be reversed by resveratrol. Taken together, these data indicate that resveratrol suppresses pancreatic cancer migration and invasion through the inhibition of the PI-3K/Akt/NF-κB signaling pathway. This study suggests that resveratrol may be a potential anticancer agent for pancreatic cancer.

Journal ArticleDOI
TL;DR: The exposure to n-3 fatty acids enhances adult hippocampal neurogenesis associated with cognitive and behavioral processes, promotes synaptic plasticity by increasing long-term potentiation and modulates synaptic protein expression to stimulate the dendritic arborization and new spines formation.
Abstract: Omega-3 polyunsaturated fatty acids (PUFA) are essential unsaturated fatty acids with a double bond (C=C) starting after the third carbon atom from the end of the carbon chain. They are important nutrients but, unfortunately, mammals cannot synthesize them, whereby they must be obtained from food sources or from supplements. Amongst nutritionally important polyunsaturated n-3 fatty acids, α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are highly concentrated in the brain and have anti-oxidative stress, anti-inflammatory and antiapoptotic effects. They are involved in many bodily processes and may reportedly lead to neuron protection in neurological diseases. aged or damaged neurons and in Alzheimer's disease. Their effect in cognitive and behavioral functions and in several neurological and psychiatric disorders has been also proven. The dentate gyrus (DG), a sub-region of hippocampus, is implicated in cognition and mood regulation. The hippocampus represents one of the two areas in the mammalian brain in which adult neurogenesis occurs. This process is associated with beneficial effects on cognition, mood and chronic pharmacological treatment. The exposure to n-3 fatty acids enhances adult hippocampal neurogenesis associated with cognitive and behavioral processes, promotes synaptic plasticity by increasing long-term potentiation and modulates synaptic protein expression to stimulate the dendritic arborization and new spines formation. On this basis we review the effect of n-3 fatty acids on adult hippocampal neurogenesis and neuroplasticity. Moreover their possible use as a new therapeutic approach for neurodegenerative diseases is pointed out.

Journal ArticleDOI
TL;DR: Current findings on the latest advancements and trends in antioxidant polysaccharides isolated from the following: plants, fungi, bacteria, animal sources, and algae are presented.
Abstract: Pharmacotherapy using natural substances can be currently regarded as a very promising future alternative to conventional therapy. With the rapid development of biotechnologies and analytical techniques, a great number of methods have been developed for the identification and quantification of the material, extracts, and products of natural ingredients. The advances available today. The need for safer drugs without side effects has led to the use of natural ingredients with proven safety. In recent years, some bioactive polysaccharides isolated from natural sources have attracted much attention in the field of biochemistry and pharmacology. As an example, polysaccharides or their glycoconjugates were shown to exhibit multiple biological activities including anticarcinogenic, anticoagulant, immunostimulating, antioxidant, etc. During the last several years, we have witnessed a steady expansion in the number of publications that focus in antioxidant polysaccharides. This review presents current findings on the latest advancements and trends in antioxidant polysaccharides isolated from the following: plants, fungi, bacteria, animal sources, and algae. Some interesting studies focus on investigation of the relationship between their structure and antioxidant activity, elucidation of their antioxidant mechanism at the molecular level, and improvement of their various biological activities by chemical modifications. Although the mechanism of their antioxidant action is still not completely clear, these polysaccharides are suggested to enhance cell-mediated immune responses in vivo and in vitro and act as biological response modifiers.

Journal ArticleDOI
TL;DR: The significance of HNE in mediating various disease processes and how regulation of its metabolism could be therapeutically effective are discussed.
Abstract: Metastable aldehydes produced by lipid peroxidation act as 'toxic second messengers' that extend the injurious potential of free radicals. 4-hydroxy 2-nonenal (HNE), a highly toxic and most abundant stable end product of lipid peroxidation, has been implicated in the tissue damage, dysfunction, injury associated with aging and other pathological states such as cancer, Alzheimer, diabetes, cardiovascular and inflammatory complications. Further, HNE has been considered as a oxidative stress marker and it act as a secondary signaling molecule to regulates a number of cell signaling pathways. Biological activity of HNE depends on its intracellular concentration, which can differentially modulate cell death, growth and differentiation. Therefore, the mechanisms responsible for maintaining the intracellular levels of HNE are most important, not only in the defense against oxidative stress but also in the pathophysiology of a number of disease processes. In this review, we discussed the significance of HNE in mediating various disease processes and how regulation of its metabolism could be therapeutically effective.

Journal ArticleDOI
TL;DR: In this review several in vivo biodistribution studies and pharmacological proof-of evidence of brain delivery of model drugs are reported, demonstrating the ability of g7-NPs to create BBB interaction and trigger an efficacious BBB crossing.
Abstract: Nanomedicine is certainly one of the scientific and technological challenges of the coming years In particular, biodegradable nanoparticles formulated from poly (D,L-lactide-co-glycolide) (PLGA) have been extensively investigated for sustained and targeted delivery of different agents, including recombinant proteins, plasmid DNA, and low molecular weight compounds PLGA NPs present some very attractive properties such as biodegradability and biocompatibility, protection of drug from degradation, possibility of sustained release, and the possibility to modify surface properties to target nanoparticles to specific organs or cells Moreover, PLGA NPs have received the FDA and European Medicine Agency approval in drug delivery systems for parenteral administration, thus reducing the time for human clinical applications This review in particular deals on surface modification of PLGA NPs and their possibility of clinical applications, including treatment for brain pathologies such as brain tumors and Lysosomal Storage Disorders with neurological involvement Since a great number of pharmacologically active molecules are not able to cross the Blood-Brain Barrier (BBB) and reach the Central Nervous System (CNS), new brain targeted polymeric PLGA NPs modified with glycopeptides (g7- NPs) have been recently produced In this review several in vivo biodistribution studies and pharmacological proof-of evidence of brain delivery of model drugs are reported, demonstrating the ability of g7-NPs to create BBB interaction and trigger an efficacious BBB crossing Moreover, another relevant development of NPs surface engineering was achieved by conjugating to the surface of g7-NPs, some specific and selective antibodies to drive NPs directly to a specific cell type once inside the CNS parenchyma

Journal ArticleDOI
TL;DR: It is argued that the rationale for therapy choice depends on a complete understanding of cancer cell redox state, namely, the "redox signaling signature of cancer", as well as ROS-elevating and ROS-depleting anticancer strategies.
Abstract: Reactive oxygen species (ROS) are a group of highly reactive chemicals under tight control of intracellular antioxidants. The balance in oxidation-antioxidation is essential for maintaining normal cell functions, and any imbalance could lead to a wide range of diseases including cancer. The intracellular level of ROS is generally elevated in cancer cells, revealing a critical role of ROS in the process of carcinogenesis and cancer progression. Conversely, there is also evidence showing that ROS can act as cancer suppressors. This may be due to the varying antioxidant capacities of different cancers. These findings indicate a complex redox state in cancer cells. In this review we summarize the main features of ROS and their functions with respect to cancer initiation, hallmarks of cancer, and signaling in cancer cells. ROS-elevating and ROS-depleting anticancer strategies and their mechanisms are thoroughly discussed. We argue that the rationale for therapy choice depends on a complete understanding of cancer cell redox state, namely, the "redox signaling signature" of cancer.

Journal ArticleDOI
TL;DR: The clinical scenario underlying the increased interest on phytoestrogens is outlined, by overviewing the evolution of the evidence on HRT and its main therapeutic goals, and available evidence on their riskbenefit profile is put in a regulatory perspective, in light of the recent regulation on health claims of food supplements.
Abstract: Phytoestrogens represent a diverse group of non-steroidal natural products, which seem to have some oestrogenic effects and are often marketed as food supplements. Population exposed to phytoestrogens is potentially increasing, in part because an unfavourable risk-benefit profile of Hormone Replacement Therapy (HRT) for prolonged treatments (e.g., osteoporosis prevention) highlighted by the publication of the Women Health Initiative (WHI) trial in 2002, but also because many post-menopausal women often perceived phytoestrogens in food supplements as a safer alternative than HRT. Despite of increasing preclinical and clinical studies in the past decade, appealing evidence is still lacking to support the overall positive risk-benefit profile of phytoestrogens. Their status as food supplements seems to discourage studies to obtain new evidence, and the chance to buy them by user’s initiative make it difficult to survey their prevalence and pattern of use. The aim of the present review is to: (a) outline the clinical scenario underlying the increased interest on phytoestrogens, by overviewing the evolution of the evidence on HRT and its main therapeutic goals (e.g., menopausal symptoms relief, chemoprevention, osteoporosis prevention); (b) address the chemical and pharmacological features (e.g. chemical structure, botanical sources, mechanism of action) of the main compounds (e.g., isoflavones, lignans, coumestans); (c) describe the clinical evidence on potential therapeutic applications; (d) put available evidence on their riskbenefit profile in a regulatory perspective, in light of the recent regulation on health claims of food supplements.

Journal ArticleDOI
TL;DR: For et al. as discussed by the authors proposed that late relapses result from steady stochastic progressions from single dormant malignant cells to avascular micrometastases and then on to growing deposits.
Abstract: To explain a bimodal pattern of hazard of relapse among early stage breast cancer patients identified in multiple databases, we proposed that late relapses result from steady stochastic progressions from single dormant malignant cells to avascular micrometastases and then on to growing deposits. However in order to explain early relapses, we had to postulate that something happens at about the time of surgery to provoke sudden exits from dormant phases to active growth and then to detection. Most relapses in breast cancer are in the early category. Recent data from Forget et al. suggest an unexpected mechanism. They retrospectively studied results from 327 consecutive breast cancer patients comparing various perioperative analgesics and anesthetics in one Belgian hospital and one surgeon. Patients were treated with mastectomy and conventional adjuvant therapy. Relapse hazard updated Sept 2011 are presented. A common Non-Steroidal Anti-Inflammatory Drug (NSAID) analgesic used in surgery produced far superior disease-free survival in the first 5 years after surgery. The expected prominent early relapse events in months 9-18 are reduced 5-fold. If this observation holds up to further scrutiny, it could mean that the simple use of this safe, inexpensive and effective anti-inflammatory agent at surgery might eliminate early relapses. Transient systemic inflammation accompanying surgery could facilitate angiogenesis of dormant micrometastases, proliferation of dormant single cells, and seeding of circulating cancer stem cells (perhaps in part released from bone marrow) resulting in early relapse and could have been effectively blocked by the perioperative anti-inflammatory agent.

Journal ArticleDOI
TL;DR: The neuroprotective potential of curcumin, with emphasis on Alzheimer's disease, as well as its limitations will be discussed in detail.
Abstract: As demographics in developed nations shift towards an aging population, neurodegenerative pathologies, especially dementias such as Alzheimer's disease, pose one of the largest challenges to the modern health care system. Since there is yet no cure for dementia, there is great pressure to discover potential therapeutics for these diseases. One popular candidate is curcumin or diferuloylmethane, a polyphenolic compound that is the main curcuminoid found in Curcuma longa (family Zingiberaceae). In recent years, curcumin has been reported to possess anti-amyloidogenic, antiinflammatory, anti-oxidative, and metal chelating properties that may result in potential neuroprotective effects. Particularly, the hydrophobicity of the curcumin molecule hints at the possibility of blood-brain barrier penetration and accumulation in the brain. However, curcumin exhibits extremely low bioavailability, mainly due to its poor aqueous solubility, poor stability in solution, and rapid intestinal first-pass and hepatic metabolism. Despite the many efforts that are currently being made to improve the bioavailability of curcumin, brain concentration of curcumin remains low. Furthermore, although many have reported that curcumin possesses a relatively low toxicity profile, curcumin applied at high doses, which is not uncommon practice in many in vivo and clinical studies, may present certain dangers that in our opinion have not been addressed sufficiently. Herein, the neuroprotective potential of curcumin, with emphasis on Alzheimer's disease, as well as its limitations will be discussed in detail.

Journal ArticleDOI
TL;DR: The aim of this review is to highlight specific characteristics of Schiff-based compounds capable of chelating metal ions and their antioxidant activity.
Abstract: The search for metal-derived antioxidants has received much attention and effort in order to identify the compounds having high capacity in scavenging free radicals related to various disorders and diseases associated with oxidative damage, caused by reactive oxygen species (ROS). Presently, synthetic antioxidants are widely used because they are effective and cheaper than natural antioxidants. Currently a number of Schiff-base metal complexes have been investigated as effective scavengers of ROS, acting as antioxidants. The aim of this review is to highlight specific characteristics of Schiff-based compounds capable of chelating metal ions and their antioxidant activity. Schiff bases form an important class of organic compounds with a wide variety of biological properties. Schiff bases have often been used as chelating ligands in the field of coordination chemistry, and their metal complexes have been of great interest to researchers for many years. The activity is usually increased by complexation therefore to understand the properties of both ligands and metal can lead to the synthesis of highly active compounds. The influence of certain metals on the biological activity of these compounds and their intrinsic chemical interest as multidentate ligands has prompted a considerable increase in the study of their coordination behavior. Development of a new chemotherapeutic Schiff bases and their metal complexes is now attracting the attention of medicinal chemists.

Journal ArticleDOI
TL;DR: A newly rising subfield called computational peptidology that focuses on the use of computational and theoretical approaches to treat peptide-related problems is comprehensively reviewed on the design and discovery of peptide agents targeting protein-protein interactions.
Abstract: The recent focus on protein-protein interaction networks has increasingly been shifted towards the disruption of protein complexes, which either are mediated by the binding of a globular domain in one protein to a short peptide stretch in another, or involve flat, large, and hydrophobic interfaces that classical small-molecule agents are not always ideally suited. Rational design of therapeutic peptides with high affinity targeting such interactions has emerged as a new and promising tool in discovery of potential drug candidates against associated diseases. The design is commonly based on bioinformatics methods or molecular modeling techniques, indirectly exploiting structure-activity relationship at the level of peptide sequence or directly deriving lead entities from protein complex architecture. Here, a newly rising subfield called computational peptidology that focuses on the use of computational and theoretical approaches to treat peptide-related problems is comprehensively reviewed on the design and discovery of peptide agents targeting protein-protein interactions. We address a systematic discussion on several representative cases in which the computational peptidology is successfully employed to develop peptide therapeutics. Besides, some problems and pitfalls accompanied with the current use of computational methods in peptide modeling and design are also present.

Journal ArticleDOI
TL;DR: Various pharmacological and dietary approaches to enhance lung antioxidant levels and beneficial effects of antioxidant therapeutics in treating or intervening the progression of COPD have been discussed.
Abstract: The progression and exacerbations of chronic obstructive pulmonary disease (COPD) are intimately associated with tobacco smoke/biomass fuel-induced oxidative and aldehyde/carbonyl stress. Alterations in redox signaling proinflammatory kinases and transcription factors, steroid resistance, unfolded protein response, mucus hypersecretion, extracellular matrix remodeling, autophagy/apoptosis, epigenetic changes, cellular senescence/aging, endothelial dysfunction, autoimmunity, and skeletal muscle dysfunction are some of the pathological hallmarks of COPD. In light of the above it would be prudent to target systemic and local oxidative stress with agents that can modulate the antioxidants/ redox system or by boosting the endogenous levels of antioxidants for the treatment and management of COPD. Identification of various antioxidant agents, such as thiol molecules (glutathione and mucolytic drugs, such as N-acetyl-Lcysteine, N-acystelyn, erdosteine, fudosteine, ergothioneine, and carbocysteine lysine salt), dietary natural productderived polyphenols and other compounds (curcumin, resveratrol, green tea catechins, quercetin sulforaphane, lycopene, acai, alpha-lipoic acid, tocotrienols, and apocynin) have made it possible to modulate various biochemical aspects of COPD. Various researches and clinical trials have revealed that these antioxidants can detoxify free radicals and oxidants, control expression of redox and glutathione biosynthesis genes, chromatin remodeling, and ultimately inflammatory gene expression. In addition, modulation of cigarette smoke-induced oxidative stress and related cellular changes have also been reported to be effected by synthetic molecules. This includes specific spin traps like α-phenyl-N-tert-butyl nitrone, a catalytic antioxidant (ECSOD mimetic), porphyrins (AEOL 10150 and AEOL 10113), and a superoxide dismutase mimetic M40419, lipid peroxidation and protein carbonylation blockers/inhibitors, such as edaravone and lazaroids/tirilazad, myeloperoxidase inhibitors, as well as specialized pro-resolving mediators/inflammatory resolving lipid mediators, omega-3 fatty acids, vitamin D, and hydrogen sulfide. According to various studies it appears that the administration of multiple antioxidants could be a more effective mode used in the treatment of COPD. In this review, various pharmacological and dietary approaches to enhance lung antioxidant levels and beneficial effects of antioxidant therapeutics in treating or intervening the progression of COPD have been discussed.

Journal ArticleDOI
TL;DR: Salinomycin, traditionally used as an anti-coccidial drug, has recently been shown to possess anti-cancer and anti- cancer stem cell (CSC) effects, as well as activities to overcome multi-drug resistance based on studies using human cancer cell lines, xenograft mice, and in case reports involving cancer patients in pilot clinical trials.
Abstract: Salinomycin, traditionally used as an anti-coccidial drug, has recently been shown to possess anti-cancer and anti-cancer stem cell (CSC) effects, as well as activities to overcome multi-drug resistance based on studies using human cancer cell lines, xenograft mice, and in case reports involving cancer patients in pilot clinical trials. Therefore, salinomycin may be considered as a promising novel anti-cancer agent despite its largely unknown mechanism of action. This review summarizes the pharmacologic effects of salinomycin and presents possible mechanisms by which salinomycin exerts its anti-tumorigenic activities. Recent advances and potential complications that might limit the utilization of salinomycin as an anti-cancer and anti-CSC agent are also presented and discussed.

Journal ArticleDOI
TL;DR: This review article summarizes the so far acquired knowledge of the most important mechanisms of action of flavonoids in atherosclerosis progression and summarizes the current literature on polyphenols.
Abstract: Polyphenols are composed of a wide variety of molecules that are classified into several categories, according to their chemical type such as phenolic acids, flavonoids, stilbenes, and lignans. Many studies have proven the beneficial effects of flavonoids in atherosclerosis progression and cardiovascular disease. Dietary flavonoids reduce oxidative stress and exert anti-inflammatory actions. Moreover, flavonoids have the ability to avoid the thrombus formation, improve endothelial function, modify lipid levels and regulate glucose metabolism. In the context of this evidence in this review article we summarize the so far acquired knowledge of the most important mechanisms of action of flavonoids in atherosclerosis progression.