scispace - formally typeset
Open AccessJournal ArticleDOI

Programming curvature using origami tessellations

TLDR
In this article, scale-independent elementary geometric constructions and constrained optimization algorithms can be used to determine spatially modulated patterns that yield approximations to given surfaces of constant or varying curvature.
Abstract
Origami describes rules for creating folded structures from patterns on a flat sheet, but does not prescribe how patterns can be designed to fit target shapes. Here, starting from the simplest periodic origami pattern that yields one-degree-of-freedom collapsible structures-we show that scale-independent elementary geometric constructions and constrained optimization algorithms can be used to determine spatially modulated patterns that yield approximations to given surfaces of constant or varying curvature. Paper models confirm the feasibility of our calculations. We also assess the difficulty of realizing these geometric structures by quantifying the energetic barrier that separates the metastable flat and folded states. Moreover, we characterize the trade-off between the accuracy to which the pattern conforms to the target surface, and the effort associated with creating finer folds. Our approach enables the tailoring of origami patterns to drape complex surfaces independent of absolute scale, as well as the quantification of the energetic and material cost of doing so.

read more

Citations
More filters
Journal ArticleDOI

Actuation performance of fluidic origami cellular structure: a holistic investigation

TL;DR: It is found that an optimal folding angle exists to maximize the actuation capability, while the sector angle of Miura-ori can be tailored to effectively program theActuation performance.
Journal ArticleDOI

Origami-inspired thin-film shape memory alloy devices.

TL;DR: In this paper, the authors describe the design and fabrication of miniaturized origami structures based on thin-film shape memory alloys, which are attractive for medical implants, as they overcome the opposing requirements of crimping the implant for insertion into an artery while keeping sensitive parts of the implant nearly stress-free.
Journal ArticleDOI

Design and motion analysis of axisymmetric 3D origami with generic six-crease bases

TL;DR: The method for designing 3D origami has potential applications ranging from self-folding tessellations to deployable architectures, and analytically calculates the 3D Origami shape with an axisymmetric structure.
Journal ArticleDOI

Programming stiff inflatable shells from planar patterned fabrics

TL;DR: In this article, a single-step method to shapeprogram stiff inflated structures is presented, which can be used for numerous large scale applications, ranging from space deployable structures to emergency shelters.
Journal ArticleDOI

Bioinspired, Shape-Morphing Scale Battery for Untethered Soft Robots

- 01 Jun 2022 - 
TL;DR: In this paper , a shape-morphing battery for untethered soft robots is proposed, which is created by folding well-defined, two-dimensional patterns with cutouts.
References
More filters
Book ChapterDOI

I and J

Journal ArticleDOI

Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer

TL;DR: In this paper, the authors describe the appearance of complex, ordered structures induced by the buckling of thin metal films owing to thermal contraction of an underlying substrate, and account qualitatively for the size and form of the patterned features in terms of the nonuniform stresses developed in the film near steps on the polymer substrate.
Journal ArticleDOI

Using origami design principles to fold reprogrammable mechanical metamaterials

TL;DR: Working with the Miura-ori tessellation, it is found that each unit cell of this crease pattern is mechanically bistable, and by switching between states, the compressive modulus of the overall structure can be rationally and reversibly tuned.
Journal ArticleDOI

Geometry of Miura-folded metamaterials

TL;DR: This paper describes two folded metamaterials based on the Miura-ori fold pattern, where the fold pattern provides a negative Poisson’s ratio for in-plane deformations and a positive Poisson's ratio for out-of-plane bending.
Book

Geometric Folding Algorithms: Linkages, Origami, Polyhedra

TL;DR: Aimed primarily at advanced undergraduate and graduate students in mathematics or computer science, this lavishly illustrated book will fascinate a broad audience, from high school students to researchers.
Related Papers (5)